首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >计算机视觉的未来方向:无监督学习与生成模型

计算机视觉的未来方向:无监督学习与生成模型

原创
作者头像
用户11764306
发布2025-07-30 19:36:02
发布2025-07-30 19:36:02
800
举报

ECCV:计算机视觉的未来方向?

欧洲计算机视觉会议(ECCV)于周日开幕,与国际计算机视觉会议(ICCV)交替举办。原定今年在格拉斯哥举行的ECCV,与今年夏天大多数主要计算机科学会议一样,转为线上举行。

计算机视觉的现状

Thomas Brox是亚马逊学者,也是弗莱堡大学的计算机科学教授,担任今年ECCV的程序主席。他表示:“过去,ECCV更偏向数学和3D几何,而CVPR更偏向模式识别。但现在,由于深度学习的普及,两者越来越相似。”

Brox第一次参加ECCV是在2004年,当时他还是研究生。到了2014年、2015年,深度学习革命席卷计算机视觉领域,他回忆道:“那时许多计算机视觉问题突然变得简单了。你随便用一个网络,性能就能远超以前的方法。”

然而,如今情况发生了变化:“现在大家都在调整网络的细节、训练方法、数据收集和呈现方式,以获得微小的改进。基准测试的进展仍然较快,但概念上的进展相对缓慢。过去,当概念进展停滞时,基准测试的进展最终也会停止。”

未来的突破方向

Brox认为,未来的突破可能来自以下几个方向:

  1. 无监督学习:当前的机器学习主要依赖标注数据(监督学习),但标注数据可能限制模型的潜力。无监督学习通过未标注数据训练模型,可能带来新的突破。
  2. 生成模型:与当前主流的判别模型不同,生成模型试图学习变量之间的概率分布,从而构建世界的统计模型。生成模型不仅能分类,还能解释数据,可能提供更鲁棒的模型。
  3. 深度学习与几何学的结合:Brox正在研究如何将深度学习与传统的3D几何方法结合,尤其是利用物体运动信息推断其3D形状。他认为,运动信号中包含大量未被充分利用的信息,结合几何学和深度学习的优势可能带来新的进展。

挑战与机遇

Brox指出,新概念在初期往往不如经过优化的现有方法表现好,就像深度学习早期一样。研究者需要坚持并不断改进,才能使其达到业界领先水平。

他总结道:“深度学习与几何学的结合非常有前景。你不能只用深度学习解决所有问题,而是需要将经典几何、数学与深度学习的模式识别能力结合起来。”

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • ECCV:计算机视觉的未来方向?
    • 计算机视觉的现状
    • 未来的突破方向
    • 挑战与机遇
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档