IJCAI 2025将在2025年8月16日到8月22日于加拿大蒙特利尔(Montreal, Canada)和2025年8月28日到31日在中国广州(Guangzhou, China)举行。IJCAI 2025共有5404篇投稿,共录取了1042篇论文,录取率19.3%。
本文总结了2025 IJCAI上有关时间序列(time series)相关论文,共计26篇。
时间序列Topic:预测,异常检测,因果发现,时序分析,LLM应用,多模态等。其中23-26为Survey Track,1为蒙特利尔会场,其余Main Track论文为广州会场。
[Montreal]1. CASA: CNN Autoencoder-based Score Attention for Efficient Multivariate Long-term Time-series Forecasting
2. AdaMixT: Adaptive Weighted Mixture of Multi-Scale Expert Transformers for Time Series Forecasting
3. Non-collective Calibrating Strategy for Time Series Forecasting
4. TCDM: A Temporal Correlation-Empowered Diffusion Model for Time Series Forecasting
5. QuantileFormer: Probabilistic Time Series Forecasting with a Pattern-Mixture Decomposed VAE Transformer
6. Beyond Statistical Analysis: Multimodal Framework for Time Series Forecasting with LLM-Driven Temporal Pattern
7. Causal View of Time Series Imputation: Some Identification Results on Missing Mechanism
8. Conditional Information Bottleneck-Based Multivariate Time Series Forecasting
9. FreEformer: Frequency Enhanced Transformer for Multivariate Time Series Forecasting
10. LLM-TPF: Multiscale Temporal Periodicity-Semantic Fusion LLMs for Time Series Forecasting
11. Learning to Extrapolate and Adjust: Two-Stage Meta-Learning for Concept Drift in Online Time Series Forecasting
12. MedualTime: A Dual-Adapter Language Model for Medical Time Series-Text Multimodal Learning
13. T2S: High-resolution Time Series Generation with Text-to-Series Diffusion Models
14. State Feedback Enhanced Graph Differential Equations for Multivariate Time Series Forecasting
15. FreqLLM: Frequency-Aware Large Language Models for Time Series Forecasting
16. Efficient Constraint-based Window Causal Graph Discovery in Time Series with Multiple Time Lags
17. CRAFT: Time Series Forecasting with Cross-Future Behavior Awareness
18. MMNet: Missing-Aware and Memory-Enhanced Network for Multivariate Time Series Imputation
19. Conditional Denoising Meets Polynomial Modeling: A Flexible Decoupled Framework for Time Series Forecasting
20. DGraFormer: Dynamic Graph Learning Guided Multi-Scale Transformer for Multivariate Time Series Forecasting
21. RTdetector: Deep Transformer Networks for Time Series Anomaly Detection Based on Reconstruction Trend
22. General Incomplete Time Series Analysis via Patch Dropping Without Imputation
Survey Track
23. Towards Cross-Modality Modeling for Time Series Analytics: A Survey in the LLM Era
24. Deep Learning for Multivariate Time Series Imputation: A Survey
25. Harnessing Vision Models for Time Series Analysis: A Survey
26. Comprehensive Review of Neural Differential Equations for Time Series Analysis
说明:如果论文总结中有(模型)图,则论文已经在网络上公开(arXiv,OpenReview等)。
链接:https://arxiv.org/abs/2505.02011
作者:Minhyuk Lee, Hyekyung Yoon, MyungJoo Kang
关键词:多元时间序列预测,CNN,自编码器
作者:Huanyao Zhang, Jiaye Lin, Wentao Zhang, Haitao Yuan, Guoliang Li
关键词:预测,专家系统,Transformer
链接:https://www.arxiv.org/abs/2506.03176
作者:Bin Wang, Yongqi Han, Minbo Ma, Tianrui Li, Junbo Zhang, Feng Hong, Yanwei Yu
关键词:预测,校准策略
作者:Huibo Xu, Likang Wu, Xianquan Wang, Zhiding Liu, Qi Liu
关键词:预测,扩散模型,时间相关性
作者:Yimiao Shao, Wenzhong Li, Kang Xia, Kaijie Lin, Mingkai Lin, Sanglu Lu
关键词:概率预测,分位数
作者:Jiahong Xiong, Chengsen Wang, Haifeng Sun, Yuhan Jing, Qi Qi, Zirui Zhuang, Lei Zhang, Jianxin Liao, Jingyu Wang
关键词:预测,多模态,LLM
链接:https://www.arxiv.org/abs/2505.07180
作者:Ruichu Cai, Kaitao Zheng, Junxian Huang, Zijian Li, Zhengming Chen, Boyan Xu, Zhifeng Hao
关键词:插补,因果
作者:Xinhui Li, Liang Duan, Lixing Yu, Kun Yue, Yuehua Li
关键词:多元时间序列预测,信息瓶颈
链接:https://arxiv.org/abs/2501.13989
作者:Wenzhen Yue, Yong Liu, Xianghua Ying, Bowei Xing, Ruohao Guo, Ji Shi
关键词:多元时间序列预测,频域增强
作者:Qihong Pan, Haofei Tan, Guojiang Shen, Xiangjie Kong, Mengmeng Wang, Chenyang Xu
关键词:预测,LLM,语义信息
作者:Weiqi Chen, Zhaoyang Zhu, Yifan Zhang, Lefei Shen, Linxiao Yang, Qingsong Wen, Liang Sun
关键词:在线预测,元学习
链接:https://arxiv.org/abs/2406.06620
作者:Jiexia Ye, Weiqi Zhang, Ziyue Li, Jia Li, Meng Zhao, Fugee Tsung
关键词:医疗时序,多模态学习
链接:https://arxiv.org/abs/2505.02417
作者:Yunfeng Ge, Jiawei Li, Yiji Zhao, Haomin Wen, Zhao Li, Meikang Qiu, Hongyan Li, Ming Jin, Shirui Pan
关键词:多模态时间序列生成,扩散模型,多模态时序数据集
作者:Jiaxu Cui, Qipeng Wang, Yiming Zhao, Bingyi Sun, Pengfei Wang, Bo Yang
关键词:多元时间序列预测,差分方程
作者:Shunnan Wang, Min Gao, Zongwei Wang, Yibing Bai, Feng Jiang, Guansong Pang
关键词:预测,LLM,频域感知
作者:Yewei Xia, Yixin Ren, Hong Cheng, Hao Zhang, Jihong Guan, Minchuan Xu, Shuigeng Zhou
关键词:因果图发现
链接:https://arxiv.org/abs/2505.13896
作者:Yingwei Zhang, Ke Bu, Zhuoran Zhuang, Tao Xie, Yao Yu, Dong Li, Yang Guo, Detao Lv
关键词:预测,未来行为感知
作者:Xiaoye Miao, Han Shi, Yi Yuan, Daozhan Pan, Yangyang Wu, Xiaohua Pan
关键词:插补,记忆增强
链接:https://arxiv.org/abs/2410.13253
作者:Jintao Zhang, Mingyue Cheng, Xiaoyu Tao, Zhiding Liu, Daoyu Wang
关键词:预测,多项式建模
作者:Han Yan, Dongliang Chen, Guiyuan Jiang, Bin Wang, Lei Cao, Junyu Dong, Yanwei Yu
关键词:多元时间序列预测,动态图
作者:Xinhong Liu, Xiaoliang Li, Yangfan Li, Fengxiao Tang, Ming Zhao
关键词:异常检测,趋势重建
作者:Yangyang Wu, Yi Yuan, Mengying Zhu, Xiaoye Miao, Meng Xi
关键词:不完整时序分析
链接:https://arxiv.org/abs/2505.02583
作者:Chenxi Liu, Shaowen Zhou, Qianxiong Xu, Hao Miao, Cheng Long, Ziyue Li, Rui Zhao
关键词:时序分析,跨模态,LLM
链接:https://arxiv.org/abs/2402.04059
作者:Jun Wang, Wenjie Du, Yiyuan Yang, Linglong Qian, Wei Cao, Keli Zhang, Wenjia Wang, Yuxuan Liang, Qingsong Wen
关键词:插补
链接:https://arxiv.org/abs/2502.08869
作者:Jingchao Ni, Ziming Zhao, ChengAo Shen, Hanghang Tong, Dongjin Song, Wei Cheng, Dongsheng Luo, Haifeng Chen
关键词:视觉模型,多模态
链接:https://arxiv.org/abs/2502.09885
作者:YongKyung Oh, Seungsu Kam, Jonghun Lee, Dong-Young Lim, Sungil Kim, Alex A. T. Bui
关键词:时序分析,神经微分方程