首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >[C++]opencv中findContours函数用法

[C++]opencv中findContours函数用法

作者头像
云未归来
发布2025-07-21 12:30:43
发布2025-07-21 12:30:43
18200
代码可运行
举报
运行总次数:0
代码可运行

cv::findContours 是 OpenCV 库中用于在二值图像中查找轮廓的函数。该函数非常强大,可以用于图像分割、形状分析等任务。以下是对 cv::findContours 函数的详细介绍:

函数原型

在 C++ 接口中,cv::findContours 的函数原型通常如下:

代码语言:javascript
代码运行次数:0
运行
复制
void cv::findContours(InputOutputArray image, OutputArrayOfArrays contours, OutputArray hierarchy,
                      int mode, int method, Point offset = Point())
参数说明
  1. image
    • 类型:InputOutputArray
    • 描述:输入的二值图像。这个函数通常在二值图像上操作,因此输入的图像应该是经过阈值处理后的图像,其中对象的像素值为非零(如255,表示白色),背景的像素值为0(表示黑色)。
  2. contours
    • 类型:OutputArrayOfArrays
    • 描述:用于存储检测到的轮廓的容器。这通常是一个 std::vector<std::vector<cv::Point>> 类型的变量,其中每个内部 vector<cv::Point> 表示一个轮廓,由一系列的点组成。
  3. hierarchy(可选):
    • 类型:OutputArray
    • 描述:用于存储轮廓之间的层次结构信息的容器。这是一个可选参数,如果你不需要轮廓之间的层级关系,可以将其设置为空(不传递或使用默认值)。如果传递了这个参数,它将被填充为一个 std::vector<Vec4i> 类型的变量,其中每个 Vec4i 表示一个轮廓的层级信息,包括当前轮廓的下一个轮廓、前一个轮廓、第一个子轮廓和父轮廓的索引。
  4. mode
    • 类型:int
    • 描述:轮廓检索模式,决定了 cv::findContours 函数如何检索轮廓。常用的模式有:
      • cv::RETR_EXTERNAL:只检索最外层的轮廓。
      • cv::RETR_LIST:检索所有的轮廓,但不建立轮廓之间的等级关系。
      • cv::RETR_CCOMP:检索所有的轮廓,并将它们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界。
      • cv::RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次。
  5. method
    • 类型:int
    • 描述:轮廓近似方法,决定了轮廓的近似方式,以减少轮廓上的点的数量,从而提高处理速度。常用的方法包括:
      • cv::CHAIN_APPROX_NONE:保存所有的轮廓点,不进行任何压缩。
      • cv::CHAIN_APPROX_SIMPLE:压缩水平、垂直和对角线方向的轮廓,只保留端点。
      • cv::CHAIN_APPROX_TC89_L1cv::CHAIN_APPROX_TC89_KCOS:使用 Teh-Chin 链近似算法的一种。
  6. offset(可选):
    • 类型:Point
    • 描述:轮廓点的偏移量。这是一个可选参数,默认为 cv::Point(0, 0),表示不进行偏移。当轮廓是从图像的某个区域(ROI)中提取的,并且需要在整个图像中分析时,这个参数将很有用。
返回值

cv::findContours 函数没有返回值(即返回类型为 void),但它通过修改传入的 contours 和(可选的)hierarchy 参数来输出轮廓和层级信息。

使用示例

以下是一个简单的使用 cv::findContours 函数的示例:

代码语言:javascript
代码运行次数:0
运行
复制
#include <opencv2/opencv.hpp>
int main() {
    cv::Mat image = cv::imread("your_binary_image.jpg", cv::IMREAD_GRAYSCALE); // 加载二值图像
    cv::Mat binary;
    cv::threshold(image, binary, 128, 255, cv::THRESH_BINARY); // 确保图像是二值的
    std::vector<std::vector<cv::Point>> contours;
    std::vector<cv::Vec4i> hierarchy;
    cv::findContours(binary, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);
    // 在这里可以使用 contours 和 hierarchy 进行进一步的处理,比如绘制轮廓等
    return 0;
}

通过 cv::findContours 函数,可以轻松地在二值图像中检测对象的轮廓,为后续的图像分析和处理提供基础。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-07-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 函数原型
  • 参数说明
  • 返回值
  • 使用示例
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档