
当我们使用onnxruntime加载模型后,需要热启动。热启动过程就是随机输入一段数据然后再模型推理一遍,一般用做激活神经元。下面以yolov8s.onnx为例我们加载模型热启动一下。热启动过程其实就是模拟模拟模型推理全过程,有助于我们简单了解推理过程是怎么样的。
测试环境:
vs2019
onnxruntime==1.12.0
代码部分:
#include <iostream>
#include<onnxruntime_cxx_api.h>
#include <numeric>
using namespace std;
using namespace Ort;
template <typename T>
T VectorProduct(const std::vector<T>& v)
{
return std::accumulate(v.begin(), v.end(), 1, std::multiplies<T>());
};
int main()
{
const wchar_t* model_path = L"D:\\yolov8s.onnx";//模型路径
Ort::Env env;//创建env
Ort::Session session(nullptr);//创建一个空会话
Ort::SessionOptions sessionOptions{ nullptr };//创建会话配置
session = Ort::Session(env, model_path, sessionOptions);
//获取输入节点数量,名称和shape
size_t inputNodeCount= session.GetInputCount();
std::cout << "输入节点数量:" << inputNodeCount << "\n";
Ort::AllocatorWithDefaultOptions allocator;
std::shared_ptr<char> inputName = std::move(session.GetInputNameAllocated(0, allocator));
std::vector<char*> inputNodeNames;
inputNodeNames.push_back(inputName.get());
std::cout << "输入节点名称:" << inputName << "\n";
Ort::TypeInfo inputTypeInfo = session.GetInputTypeInfo(0);
auto input_tensor_info = inputTypeInfo.GetTensorTypeAndShapeInfo();
ONNXTensorElementDataType inputNodeDataType = input_tensor_info.GetElementType();
std::vector<int64_t> inputTensorShape = input_tensor_info.GetShape();
std::cout << "输入节点shape:";
for (int i = 0; i<inputTensorShape.size(); i++)
{
std::cout << inputTensorShape[i]<<" ";
}
std::cout << "\n";
//获取输出节点数量、名称和shape
size_t outputNodeCount = session.GetInputCount();
std::cout << "输出节点数量:" << outputNodeCount << "\n";
std::shared_ptr<char> outputName = std::move(session.GetOutputNameAllocated(0, allocator));
std::vector<char*> outputNodeNames;
outputNodeNames.push_back(outputName.get());
std::cout << "输出节点名称:" << outputName << "\n";
Ort::TypeInfo type_info_output0(nullptr);
type_info_output0 = session.GetOutputTypeInfo(0); //output0
auto tensor_info_output0 = type_info_output0.GetTensorTypeAndShapeInfo();
ONNXTensorElementDataType outputNodeDataType = tensor_info_output0.GetElementType();
std::vector<int64_t> outputTensorShape = tensor_info_output0.GetShape();
std::cout << "输出节点shape:";
for (int i = 0; i<outputTensorShape.size(); i++)
{
std::cout << outputTensorShape[i]<<" ";
}
std::cout << "\n";
size_t input_tensor_length = VectorProduct(inputTensorShape);
std::cout << "输入tensor的长度:" << input_tensor_length << "\n";
Ort::MemoryInfo OrtMemoryInfo= Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtDeviceAllocator, OrtMemType::OrtMemTypeCPUOutput);
std::cout << "Start warming up" << endl;
float* temp = new float[input_tensor_length];
std::vector<Ort::Value> input_tensors;
std::vector<Ort::Value> output_tensors;
input_tensors.push_back(Ort::Value::CreateTensor<float>(
OrtMemoryInfo, temp, input_tensor_length, inputTensorShape.data(),
inputTensorShape.size()));
for (int i = 0; i < 3; ++i) {
output_tensors = session.Run(Ort::RunOptions{ nullptr },
inputNodeNames.data(),
input_tensors.data(),
inputNodeNames.size(),
outputNodeNames.data(),
outputNodeNames.size());
}
delete[]temp;
std::cout << "warming up over" << endl;
getchar();
}输出结果:
