首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >[Pytorch][转载]resnet模型实现

[Pytorch][转载]resnet模型实现

作者头像
云未归来
发布2025-07-18 16:06:17
发布2025-07-18 16:06:17
1580
举报

本文源自Pytorch官方:https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py import torch

import torch.nn as nn

from .utils import load_state_dict_from_url

__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',

'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',

'wide_resnet50_2', 'wide_resnet101_2']

model_urls = {

'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',

'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',

'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',

'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',

'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',

'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',

'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',

'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',

'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',

}

def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):

"""3x3 convolution with padding"""

return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,

padding=dilation, groups=groups, bias=False, dilation=dilation)

def conv1x1(in_planes, out_planes, stride=1):

"""1x1 convolution"""

return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

class BasicBlock(nn.Module):

expansion = 1

def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,

base_width=64, dilation=1, norm_layer=None):

super(BasicBlock, self).__init__()

if norm_layer is None:

norm_layer = nn.BatchNorm2d

if groups != 1 or base_width != 64:

raise ValueError('BasicBlock only supports groups=1 and base_width=64')

if dilation > 1:

raise NotImplementedError("Dilation > 1 not supported in BasicBlock")

# Both self.conv1 and self.downsample layers downsample the input when stride != 1

self.conv1 = conv3x3(inplanes, planes, stride)

self.bn1 = norm_layer(planes)

self.relu = nn.ReLU(inplace=True)

self.conv2 = conv3x3(planes, planes)

self.bn2 = norm_layer(planes)

self.downsample = downsample

self.stride = stride

def forward(self, x):

identity = x

out = self.conv1(x)

out = self.bn1(out)

out = self.relu(out)

out = self.conv2(out)

out = self.bn2(out)

if self.downsample is not None:

identity = self.downsample(x)

out += identity

out = self.relu(out)

return out

class Bottleneck(nn.Module):

# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)

# while original implementation places the stride at the first 1x1 convolution(self.conv1)

# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.

# This variant is also known as ResNet V1.5 and improves accuracy according to

# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

expansion = 4

def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,

base_width=64, dilation=1, norm_layer=None):

super(Bottleneck, self).__init__()

if norm_layer is None:

norm_layer = nn.BatchNorm2d

width = int(planes * (base_width / 64.)) * groups

# Both self.conv2 and self.downsample layers downsample the input when stride != 1

self.conv1 = conv1x1(inplanes, width)

self.bn1 = norm_layer(width)

self.conv2 = conv3x3(width, width, stride, groups, dilation)

self.bn2 = norm_layer(width)

self.conv3 = conv1x1(width, planes * self.expansion)

self.bn3 = norm_layer(planes * self.expansion)

self.relu = nn.ReLU(inplace=True)

self.downsample = downsample

self.stride = stride

def forward(self, x):

identity = x

out = self.conv1(x)

out = self.bn1(out)

out = self.relu(out)

out = self.conv2(out)

out = self.bn2(out)

out = self.relu(out)

out = self.conv3(out)

out = self.bn3(out)

if self.downsample is not None:

identity = self.downsample(x)

out += identity

out = self.relu(out)

return out

class ResNet(nn.Module):

def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,

groups=1, width_per_group=64, replace_stride_with_dilation=None,

norm_layer=None):

super(ResNet, self).__init__()

if norm_layer is None:

norm_layer = nn.BatchNorm2d

self._norm_layer = norm_layer

self.inplanes = 64

self.dilation = 1

if replace_stride_with_dilation is None:

# each element in the tuple indicates if we should replace

# the 2x2 stride with a dilated convolution instead

replace_stride_with_dilation = [False, False, False]

if len(replace_stride_with_dilation) != 3:

raise ValueError("replace_stride_with_dilation should be None "

"or a 3-element tuple, got {}".format(replace_stride_with_dilation))

self.groups = groups

self.base_width = width_per_group

self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,

bias=False)

self.bn1 = norm_layer(self.inplanes)

self.relu = nn.ReLU(inplace=True)

self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

self.layer1 = self._make_layer(block, 64, layers[0])

self.layer2 = self._make_layer(block, 128, layers[1], stride=2,

dilate=replace_stride_with_dilation[0])

self.layer3 = self._make_layer(block, 256, layers[2], stride=2,

dilate=replace_stride_with_dilation[1])

self.layer4 = self._make_layer(block, 512, layers[3], stride=2,

dilate=replace_stride_with_dilation[2])

self.avgpool = nn.AdaptiveAvgPool2d((1, 1))

self.fc = nn.Linear(512 * block.expansion, num_classes)

for m in self.modules():

if isinstance(m, nn.Conv2d):

nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):

nn.init.constant_(m.weight, 1)

nn.init.constant_(m.bias, 0)

# Zero-initialize the last BN in each residual branch,

# so that the residual branch starts with zeros, and each residual block behaves like an identity.

# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677

if zero_init_residual:

for m in self.modules():

if isinstance(m, Bottleneck):

nn.init.constant_(m.bn3.weight, 0)

elif isinstance(m, BasicBlock):

nn.init.constant_(m.bn2.weight, 0)

def _make_layer(self, block, planes, blocks, stride=1, dilate=False):

norm_layer = self._norm_layer

downsample = None

previous_dilation = self.dilation

if dilate:

self.dilation *= stride

stride = 1

if stride != 1 or self.inplanes != planes * block.expansion:

downsample = nn.Sequential(

conv1x1(self.inplanes, planes * block.expansion, stride),

norm_layer(planes * block.expansion),

)

layers = []

layers.append(block(self.inplanes, planes, stride, downsample, self.groups,

self.base_width, previous_dilation, norm_layer))

self.inplanes = planes * block.expansion

for _ in range(1, blocks):

layers.append(block(self.inplanes, planes, groups=self.groups,

base_width=self.base_width, dilation=self.dilation,

norm_layer=norm_layer))

return nn.Sequential(*layers)

def _forward_impl(self, x):

# See note [TorchScript super()]

x = self.conv1(x)

x = self.bn1(x)

x = self.relu(x)

x = self.maxpool(x)

x = self.layer1(x)

x = self.layer2(x)

x = self.layer3(x)

x = self.layer4(x)

x = self.avgpool(x)

x = torch.flatten(x, 1)

x = self.fc(x)

return x

def forward(self, x):

return self._forward_impl(x)

def _resnet(arch, block, layers, pretrained, progress, **kwargs):

model = ResNet(block, layers, **kwargs)

if pretrained:

state_dict = load_state_dict_from_url(model_urls[arch],

progress=progress)

model.load_state_dict(state_dict)

return model

def resnet18(pretrained=False, progress=True, **kwargs):

r"""ResNet-18 model from

`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>;`_

Args:

pretrained (bool): If True, returns a model pre-trained on ImageNet

progress (bool): If True, displays a progress bar of the download to stderr

"""

return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,

**kwargs)

def resnet34(pretrained=False, progress=True, **kwargs):

r"""ResNet-34 model from

`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>;`_

Args:

pretrained (bool): If True, returns a model pre-trained on ImageNet

progress (bool): If True, displays a progress bar of the download to stderr

"""

return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,

**kwargs)

def resnet50(pretrained=False, progress=True, **kwargs):

r"""ResNet-50 model from

`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>;`_

Args:

pretrained (bool): If True, returns a model pre-trained on ImageNet

progress (bool): If True, displays a progress bar of the download to stderr

"""

return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,

**kwargs)

def resnet101(pretrained=False, progress=True, **kwargs):

r"""ResNet-101 model from

`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>;`_

Args:

pretrained (bool): If True, returns a model pre-trained on ImageNet

progress (bool): If True, displays a progress bar of the download to stderr

"""

return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,

**kwargs)

def resnet152(pretrained=False, progress=True, **kwargs):

r"""ResNet-152 model from

`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>;`_

Args:

pretrained (bool): If True, returns a model pre-trained on ImageNet

progress (bool): If True, displays a progress bar of the download to stderr

"""

return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,

**kwargs)

def resnext50_32x4d(pretrained=False, progress=True, **kwargs):

r"""ResNeXt-50 32x4d model from

`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>;`_

Args:

pretrained (bool): If True, returns a model pre-trained on ImageNet

progress (bool): If True, displays a progress bar of the download to stderr

"""

kwargs['groups'] = 32

kwargs['width_per_group'] = 4

return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],

pretrained, progress, **kwargs)

def resnext101_32x8d(pretrained=False, progress=True, **kwargs):

r"""ResNeXt-101 32x8d model from

`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>;`_

Args:

pretrained (bool): If True, returns a model pre-trained on ImageNet

progress (bool): If True, displays a progress bar of the download to stderr

"""

kwargs['groups'] = 32

kwargs['width_per_group'] = 8

return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],

pretrained, progress, **kwargs)

def wide_resnet50_2(pretrained=False, progress=True, **kwargs):

r"""Wide ResNet-50-2 model from

`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>;`_

The model is the same as ResNet except for the bottleneck number of channels

which is twice larger in every block. The number of channels in outer 1x1

convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048

channels, and in Wide ResNet-50-2 has 2048-1024-2048.

Args:

pretrained (bool): If True, returns a model pre-trained on ImageNet

progress (bool): If True, displays a progress bar of the download to stderr

"""

kwargs['width_per_group'] = 64 * 2

return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],

pretrained, progress, **kwargs)

def wide_resnet101_2(pretrained=False, progress=True, **kwargs):

r"""Wide ResNet-101-2 model from

`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>;`_

The model is the same as ResNet except for the bottleneck number of channels

which is twice larger in every block. The number of channels in outer 1x1

convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048

channels, and in Wide ResNet-50-2 has 2048-1024-2048.

Args:

pretrained (bool): If True, returns a model pre-trained on ImageNet

progress (bool): If True, displays a progress bar of the download to stderr

"""

kwargs['width_per_group'] = 64 * 2

return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],

pretrained, progress, **kwargs)

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-05-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档