[GSConv介绍]
摘要 实时目标检测在工业和研究领域至关重要。传统轻量化模型依赖深度可分离卷积(DSC)但牺牲精度,而大模型难以满足边缘设备实时性需求。本文提出新型轻量卷积技术GSConv,通过混合标准卷积(SC)与DSC的特征输出,在保持精度的同时显著降低计算成本。基于GSConv进一步设计「瘦颈」(Slim-Neck, SNs)架构,通过20+组对比实验验证其优越性:在Tesla T4上以~100FPS实现SODA10M数据集70.9% AP50,达到SOTA性能。
方法
GSConv混合策略:主分支采用3x3 SC捕捉通道关联,辅助分支采用5x5 DSC提取空间特征,通过均匀混洗(shuffle)融合两类特征。
VoV-GSCSP模块:基于GSConv设计跨阶段部分网络,三种结构中以VoV-GSCSP1性价比最高。
对应图表:
特征可视化对比:
VoV-GSCSP设计:
创新点 GSConv技术:首创SC与 DSC的特征混洗机制,以50%计算量实现接近SC的表示能力。 硬件友好设计:支持线性运算混洗作为转置操作的替代方案,适配边缘设备。 颈部轻量化范式:首次提出「仅瘦颈」设计,相比全模型轻量化提升6.3% AP50。 工程优化组合:验证EIoU+Mish在轻量化模型中的最佳实践。 GSConv核心作用 特征融合:通过混洗打破DSC的通道隔离,保留空间-通道关联。 计算优化:FLOPs仅为SC的50%,参数量减少36%。 扩展性强:支持大核(17x17)辅助分支扩展感受野。 精度保障:在WiderPerson上使轻量化模型AP50提升14.3%。 对应图表:
不同卷积方法对比:
GSConv通过优雅的混合策略解决了轻量化卷积的表示瓶颈,SNs架构将其优势聚焦于检测器颈部。实验表明该方法在边缘设备上实现精度与速度的帕累托最优,为实时检测提供新范式。未来可扩展至低光检测、遥感图像
等场景。
【yolov11框架介绍】
2024 年 9 月 30 日,Ultralytics 在其活动 YOLOVision 中正式发布了 YOLOv11。YOLOv11 是 YOLO 的最新版本,由美国和西班牙的 Ultralytics 团队开发。YOLO 是一种用于基于图像的人工智能的计算机模
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。
Ultralytics YOLO11 与其前身相比引入了多项重大进步。主要改进包括:
【测试环境】
windows10 x64
ultralytics==8.3.0
torch==2.3.1
【改进流程】
from .GSConv. import *
修改tasks.py文件
创建模型配置文件
yolo11-GSConv..yaml内容如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, GSConv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, GSConv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
使用新建的yaml配置文件启动训练任务:
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO('yolo11-GSConv..yaml') # build from YAML and transfer weights
# Train the model
results = model.train(data='coco128.yaml',epochs=100, imgsz=640, batch=8, device=0, workers=1, save=True,resume=False)
成功集成后,训练日志中将显示GSConv.模块的初始化信息,表明已正确加载到模型中。
【训练说明】
第一步:首先安装好yolov11必要模块,可以参考yolov11框架安装流程,然后卸载官方版本pip uninstall ultralytics,最后安装改进的源码pip install . 第二步:将自己数据集按照dataset文件夹摆放,要求文件夹名字都不要改变 第三步:分别打开train.py,coco128.yaml和模型参数yaml文件修改必要的参数,最后执行python train.py即可训练
【提供文件】
├── [官方源码]ultralytics-8.3.0.zip
├── train/
│ ├── coco128.yaml
│ ├── dataset/
│ │ ├── train/
│ │ │ ├── images/
│ │ │ │ ├── firc_pic_1.jpg
│ │ │ │ ├── firc_pic_10.jpg
│ │ │ │ ├── firc_pic_11.jpg
│ │ │ │ ├── firc_pic_12.jpg
│ │ │ │ ├── firc_pic_13.jpg
│ │ │ ├── labels/
│ │ │ │ ├── classes.txt
│ │ │ │ ├── firc_pic_1.txt
│ │ │ │ ├── firc_pic_10.txt
│ │ │ │ ├── firc_pic_11.txt
│ │ │ │ ├── firc_pic_12.txt
│ │ │ │ ├── firc_pic_13.txt
│ │ └── val/
│ │ ├── images/
│ │ │ ├── firc_pic_100.jpg
│ │ │ ├── firc_pic_81.jpg
│ │ │ ├── firc_pic_82.jpg
│ │ │ ├── firc_pic_83.jpg
│ │ │ ├── firc_pic_84.jpg
│ │ ├── labels/
│ │ │ ├── firc_pic_100.txt
│ │ │ ├── firc_pic_81.txt
│ │ │ ├── firc_pic_82.txt
│ │ │ ├── firc_pic_83.txt
│ │ │ ├── firc_pic_84.txt
│ ├── train.py
│ ├── yolo11-GSConv..yaml
│ └── 训练说明.txt
├── [改进源码]ultralytics-8.3.0.zip
├── 改进原理.docx
└── 改进流程.docx
【常见问题汇总】 问:为什么我训练的模型epoch显示的map都是0或者map精度很低? 回答:由于源码改进过,因此不能直接从官方模型微调,而是从头训练,这样学习特征能力会很弱,需要训练很多epoch才能出现效果。此外由于改进的源码框架并不一定能够保证会超过官方精度,而且也有可能会存在远远不如官方效果,甚至精度会很低。这说明改进的框架并不能取得很好效果。所以说对于框架改进只是提供一种可行方案,至于改进后能不能取得很好map还需要结合实际训练情况确认,当然也不排除数据集存在问题,比如数据集比较单一,样本分布不均衡,泛化场景少,标注框不太贴合标注质量差,检测目标很小等等原因 【重要说明】 我们只提供改进框架一种方案,并不保证能够取得很好训练精度,甚至超过官方模型精度。因为改进框架,实际是一种比较复杂流程,包括框架原理可行性,训练数据集是否合适,训练需要反正验证以及同类框架训练结果参数比较,这个是十分复杂且漫长的过程。