首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >[Tensorflow2.X][转载]深度可卷积神经网络实现mnist识别

[Tensorflow2.X][转载]深度可卷积神经网络实现mnist识别

作者头像
云未归来
发布2025-07-18 14:40:40
发布2025-07-18 14:40:40
870
举报

from tensorflow import keras import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn import os import sys   def plot_learning_curves(history):       pd.DataFrame(history.history).plot(figsize=(8,5))     plt.grid(True)     plt.gca().set_ylim(0,1)     plt.show()     fashion_mnist = keras.datasets.fashion_mnist (x_train_all, y_train_all),(x_test,y_test) = fashion_mnist.load_data() x_valid,x_train = x_train_all[:5000],x_train_all[5000:] y_valid,y_train = y_train_all[:5000],y_train_all[5000:]   #数据归一化 from sklearn.preprocessing import StandardScaler   scaler = StandardScaler() #x_train: [None, 28, 28] -> [None,784] x_train_scaled = scaler.fit_transform(x_train.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28,1) x_valid_scaled = scaler.transform(x_valid.astype(np.float32).reshape(-1,1)).reshape(-1,28,28,1) x_test_scaled = scaler.transform(x_test.astype(np.float32).reshape(-1,1)).reshape(-1,28,28,1)       #使用relu函数 # model = tf.keras.models.Sequential() # model.add(keras.layers.Conv2D(filter=32,kernel_size=3, #                               padding='same',activation='relu', #                               input_shape=(28,28,1))) # # model.add(keras.layers.Conv2D(filters=32,kernel_size=3, #                               padding='same',activation='relu')) # model.add(keras.layers.MaxPooling2D(pool_size=2)) # # # model.add(keras.layers.Conv2D(filter=64, kernel_size=3, #                               padding='same',activation='relu')) # # model.add(keras.layers.Conv2D(filters=64,kernel_size=3, #                               padding='same',activation='relu')) # model.add(keras.layers.MaxPooling2D(pool_size=2)) # # model.add(keras.layers.Conv2D(filter=128,kernel_size=3, #                               padding='same',activation='relu')) # # model.add(keras.layers.Conv2D(filters=128,kernel_size=3, #                               padding='same',activation='relu')) # model.add(keras.layers.MaxPooling2D(pool_size=2)) # model.add(keras.layers.Flatten()) # # model.add(keras.layers.Dense(128,activation='relu')) # model.add(keras.layers.Dense(10,activation='softmax'))   #使用selu函数 model = tf.keras.models.Sequential() model.add(keras.layers.Conv2D(filters=32,kernel_size=3,                               padding='same',activation='selu',                               input_shape=(28,28,1)))   model.add(keras.layers.SeparableConv2D(filters=32,kernel_size=3,                                         padding='same',activation='selu')) model.add(keras.layers.MaxPooling2D(pool_size=2))     model.add(keras.layers.SeparableConv2D(filters=64, kernel_size=3,                               padding='same',activation='selu'))   model.add(keras.layers.SeparableConv2D(filters=64,kernel_size=3,                               padding='same',activation='selu')) model.add(keras.layers.MaxPooling2D(pool_size=2))   model.add(keras.layers.SeparableConv2D(filters=128,kernel_size=3,                               padding='same',activation='selu'))   model.add(keras.layers.SeparableConv2D(filters=128,kernel_size=3,                               padding='same',activation='selu')) model.add(keras.layers.MaxPooling2D(pool_size=2)) model.add(keras.layers.Flatten())   model.add(keras.layers.Dense(128,activation='selu')) #model.add(keras.layers.Dense(10,activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='', metrics=['accuracy'])   #使用了三个callback:Tensorboard, earlystopping, ModelCheckpoint #logdir = './spearable-cnn-selu-callbacks' logdir = os.path.join("dnn-callbacks") if not os.path.exists(logdir):     os.mkdir(logdir) output_model_file = os.path.join(logdir,"fashion_mnist_model.h5") print("out:",output_model_file) callbacks = [     tf.keras.callbacks.TensorBoard(logdir),     tf.keras.callbacks.ModelCheckpoint(output_model_file,save_best_only=True),     tf.keras.callbacks.EarlyStopping(patience=5, min_delta=1e-3) ] history = model.fit(x_train_scaled, y_train, epochs=10, validation_data=(x_valid_scaled, y_valid),callbacks=callbacks)   plot_learning_curves(history)

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-04-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档