首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >[Tensorflow2.X][转载]tfrecored基础API使用

[Tensorflow2.X][转载]tfrecored基础API使用

作者头像
云未归来
发布2025-07-18 14:17:49
发布2025-07-18 14:17:49
930
举报

import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import sklearn import pandas as pd import os import sys import time import tensorflow as tf

#tf

favorite_books = [name.encode('utf-8') for name in ['machine learning', 'cc150']] favorite_books_bytelist = tf.train.BytesList(value=favorite_books) print(favorite_books_bytelist) hours_floatlist = tf.train.FloatList(value=[15.5,9.5,70,80]) print(hours_floatlist)

age_int64list = tf.train.Int64List(value=[42]) print(age_int64list)

features = tf.train.Features(     feature={         "favorite_books": tf.train.Feature(bytes_list=favorite_books_bytelist),         "hours": tf.train.Feature(float_list=hours_floatlist),         "age": tf.train.Feature(int64_list=age_int64list)     } ) print(features)

example = tf.train.Example(features=features) print(example) serialized_example = example.SerializeToString() print(serialized_example)

output_dir = 'tfrecord_basic' if not os.path.exists(output_dir):     os.mkdir(output_dir) filename = "test.tfrecords" filename_fullpath = os.path.join(output_dir,filename) with tf.io.TFRecordWriter(filename_fullpath) as writer:     for i in range(3):         writer.write(serialized_example)

dataset = tf.data.TFRecordDataset([filename_fullpath]) for serialized_example_tensor in dataset:     print(serialized_example_tensor)

expected_features = {     "favorite_books":tf.io.VarLenFeature(dtype=tf.string),     "hours":tf.io.VarLenFeature(dtype=tf.float32),     "age":tf.io.FixedLenFeature([],dtype=tf.int64), } dataset = tf.data.TFRecordDataset([filename_fullpath]) for serialized_example_tensor in dataset:     example = tf.io.parse_single_example(         serialized_example_tensor,         expected_features)     books = tf.sparse.to_dense(example["favorite_books"], default_value=b"")     for book in books:         print(book.numpy().decode("UTF-8"))

filename_fullpath_zip = filename_fullpath+'.zip' options = tf.io.TFRecordOptions(compression_type="GZIP") with tf.io.TFRecordWriter(filename_fullpath_zip,options) as writer:     for i in range(3):         writer.write(serialized_example)

dataset_zip = tf.data.TFRecordDataset([filename_fullpath_zip], compression_type="GZIP") for serialized_example_tensor in dataset_zip:     example = tf.io.parse_single_example(         serialized_example_tensor,         expected_features)     books = tf.sparse.to_dense(example["favorite_books"], default_value=b"")     for book in books:         print(book.numpy().decode("UTF-8"))

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-04-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档