最近我们的python单细胞暑期班开课了,👉趁暑假学会Python,解锁单细胞数据的无限可能
有很多同学在问空转的资料,但是课程里暂时还没有,所以先给大家收集点好的资料解馋吧~
他的官方网站是:
https://squidpy.readthedocs.io/en/stable/notebooks/tutorials/index.html
一个比较完整的小鼠肝脏空间转录组数据处理教程
https://squidpy.readthedocs.io/en/stable/notebooks/tutorials/tutorial_vizgen_mouse_liver.html
Squidpy 基于 AnnData 数据结构,和 Scanpy 完全兼容。这套代码是基于 Vizgen MERSCOPE 平台的,但同样适用于其他平台,唯一区别在于数据读入时的格式和参数设置,后续分析代码几乎通用。
10X数据专门的教程在:
https://squidpy.readthedocs.io/en/stable/notebooks/tutorials/tutorial_visium_hne.html
初级、中级、高级、特定技术的都有啦
https://spatialdata.scverse.org/en/latest/tutorials/notebooks/notebooks.html
https://scverse.org/learn/
这里有22个教程,其中有3个是+空转的,但是其他的也有用,也可以学一下。
数据结构
单细胞RNA测序
空间组学
适应性免疫细胞受体
表面蛋白
染色质可及性分析
技巧与提示
2024年发在natrue methods上
https://www.nature.com/articles/s41592-024-02212-x
官方教程在:
https://cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html
Loading packages 加载包
Loading Visium and single cell data 加载Visium和单细胞数据
1.Estimating cell type signatures (NB regression) 1.估计细胞类型特征(负二项回归)
2.Cell2location: spatial mapping 2.Cell2location:空间映射
3.Visualising cell abundance in spatial coordinates 3.在空间坐标中可视化细胞丰度
4.Downstream analysis 4.下游分析
Leiden clustering of cell abundance 细胞丰度的Leiden聚类
Identifying cellular compartments / tissue zones using matrix factorisation (NMF) 使用矩阵分解(NMF)识别细胞区室/组织区域
Estimate cell-type specific expression of every gene in the spatial data (needed for NCEM) 估计空间数据中每个基因的细胞类型特异性表达(NCEM所需)
5.Advanced use 5.高级用法
Working with the posterior distribution and computing arbitrary quantiles 处理后验分布并计算任意分位数
https://github.com/broadinstitute/Tangram#tutorials
https://stlearn.readthedocs.io/en/latest/
2024年6月发表在Molecular Aspects of Medicine上,10.3分的文章
https://doi.org/10.1016/j.mam.2024.101276 IF: 10.3 Q1
https://github.com/crazyhottommy/awesome_spatial_omics
这里是无法显示链接的,但是进入上面的github页面就可以显示啦。
在这里面是有基于python的,也有基于R的。
Spatial landscapes of cancers: insights and opportunities 癌症的空间景观:洞察与机遇
The emerging landscape of spatial profiling technologies 空间分析技术的新兴景观
The expanding vistas of spatial transcriptomics 空间转录组学的拓展视野
Exploring tissue architecture using spatial transcriptomics 利用空间转录组学探索组织结构
Statistical and machine learning methods for spatially resolved transcriptomics data analysis. first author Zexian was my colleague when I was at DFCI. 空间分辨转录组学数据分析的统计学和机器学习方法。第一作者Zexian是我在DFCI时的同事。
Spatial omics and multiplexed imaging to explore cancer biology 空间组学和多重成像探索癌症生物学
Method of the Year: spatially resolved transcriptomics 年度方法:空间分辨转录组学
Computational challenges and opportunities in spatially resolved transcriptomic data analysis by Jean Fan. Jean Fan撰写的空间分辨转录组数据分析中的计算挑战与机遇
Spatial components of molecular tissue biology 分子组织生物学的空间组分
Methods and applications for single-cell and spatial multi-omics 单细胞和空间多组学的方法与应用
The dawn of spatial omics 空间组学的黎明
Orchestrating Spatially-Resolved Transcriptomics Analysis with Bioconductor 使用Bioconductor编排空间分辨转录组学分析
Deconvolution vs Clustering Analysis for Multi-cellular Pixel-Resolution Spatially Resolved Transcriptomics Data A blog post by Jean Fan. 多细胞像素分辨率空间分辨转录组学数据的解卷积与聚类分析对比 Jean Fan的博客文章
Analysis, visualization, and integration of spatial datasets with Seurat 使用Seurat进行空间数据集的分析、可视化和整合
Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. 空间和单细胞转录组学整合方法在转录本分布预测和细胞类型解卷积方面的基准测试 我们发现Tangram、gimVI和SpaGE在预测RNA转录本空间分布方面优于其他整合方法,而Cell2location、SpatialDWLS和RCTD是斑点细胞类型解卷积的顶级方法。
Robust alignment of single-cell and spatial transcriptomes with CytoSPACE 使用CytoSPACE进行单细胞和空间转录组的稳健比对
A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics 空间转录组学细胞解卷积的综合基准测试与实用指南
Comparative analysis of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing MERFISH空间转录组学与bulk和单细胞RNA测序的比较分析
SODB facilitates comprehensive exploration of spatial omics data [website] SODB促进空间组学数据的全面探索 [网站]
Museum of Spatial Transcriptomics 空间转录组学博物馆
Ex situ sequencing-based 基于外部测序的方法
Spatial Transcriptomics - Visualization and analysis of gene expression in tissue sections by spatial transcriptomics (Note now commercialized as Visium, 10x Genomics) 空间转录组学 - 通过空间转录组学对组织切片中基因表达的可视化和分析(注:现已商业化为Visium,10x Genomics)
HDST - High-definition spatial transcriptomics for in situ tissue profiling HDST - 用于原位组织分析的高清空间转录组学
STRS - In situ polyadenylation enables spatial mapping of the total transcriptome [code] STRS - 原位多腺苷酸化实现全转录组的空间图谱绘制 [代码]
Expansion Spatial Transcritptomics - Expansion spatial transcriptomics 扩展空间转录组学 - 扩展空间转录组学
SlideSeq - Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution SlideSeq - Slide-seq:高空间分辨率下测量全基因组表达的可扩展技术
SlideSeq2 - Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 (Note now commercialized as Seeker, Curio Bioscience) SlideSeq2 - 使用Slide-seqV2实现近细胞分辨率的高敏感性空间转录组学(注:现已商业化为Seeker,Curio Bioscience)
SlideTags - Slide-tags: scalable, single-nucleus barcoding for multi-modal spatial genomics SlideTags - Slide-tags:多模态空间基因组学的可扩展单核条码技术
StereoSeq - Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays (Note now commercialized as STOmics, MGI/BGI/Complete Genomics) StereoSeq - 使用DNA纳米球图案阵列构建小鼠器官发生的时空转录组图谱(注:现已商业化为STOmics,MGI/BGI/Complete Genomics)
DNA Microscopy - DNA Microscopy: Optics-free Spatio-genetic Imaging by a Stand-Alone Chemical Reaction DNA显微镜 - DNA显微镜:通过独立化学反应实现无光学时空遗传成像
Volumetric DNA Microscopy - Volumetric imaging of an intact organism by a distributed molecular network 体积DNA显微镜 - 通过分布式分子网络对完整生物体进行体积成像
In situ sequencing-based 基于原位测序的方法
STARmap - Three-dimensional intact-tissue sequencing of single-cell transcriptional states STARmap - 单细胞转录状态的三维完整组织测序
STARmap PLUS - Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer's disease STARmap PLUS - 阿尔茨海默病小鼠模型中单细胞转录状态和组织病理学的整合原位图谱
IGS - In situ genome sequencing resolves DNA sequence and structure in intact biological samples IGS - 原位基因组测序解析完整生物样本中的DNA序列和结构
Imaging/hybridization-based 基于成像/杂交的方法
MERFISH - Spatially resolved, highly multiplexed RNA profiling in single cells MERFISH - 单细胞中空间分辨的高度多重RNA分析
HiPR-FISH - Highly Multiplexed Spatial Mapping of Microbial Communities HiPR-FISH - 微生物群落的高度多重空间图谱
EEL-FISH - Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH EEL-FISH - 使用EEL FISH通过电泳捕获mRNA实现可扩展的原位单细胞分析
Gene count normalization in single-cell imaging-based spatially resolved transcriptomic 基于单细胞成像的空间分辨转录组学中的基因计数标准化
Spatial omics data analysts sometimes use the “log1p” (y=log[1+x’]) transform incorrectly. Key fact: x’ represents normalized, not raw, umis/spot counts. And it really matters how you normalize! 空间组学数据分析师有时错误使用“log1p”(y=log[1+x'])变换。关键事实:x'代表标准化后的,而非原始的umis/spot计数。标准化方法真的很重要!
Sopa enables processing and analyses of image-based spatial-omics using a standard data structure and output. We currently support the following technologies: Xenium, MERSCOPE, CosMX, PhenoCycler, MACSIMA, Hyperion. Sopa was designed for generability and low-memory consumption on large images (scales to 1TB+ images). Sopa使用标准数据结构和输出实现基于图像的空间组学处理和分析。我们目前支持以下技术:Xenium、MERSCOPE、CosMX、PhenoCycler、MACSIMA、Hyperion。Sopa设计用于大图像的通用性和低内存消耗(可扩展至1TB+图像)。
Monkeybread A python package developed at Immunitas to do spatial analysis for Merfish data. Monkeybread 由Immunitas开发的用于Merfish数据空间分析的python包
Giotto a toolbox for integrative analysis and visualization of spatial expression data Giotto 空间表达数据整合分析和可视化工具箱
Voyager is a package that facilitates exploratory spatial data analysis and visualization for spatial genomics data represented by SpatialFeatureExperiment objects. Voyager是一个促进SpatialFeatureExperiment对象表示的空间基因组数据探索性空间数据分析和可视化的软件包
nnSVG: scalable identification of spatially variable genes using nearest-neighbor Gaussian processes nnSVG:使用最近邻高斯过程的可扩展空间变异基因识别
DestVI identifies continuums of cell types in spatial transcriptomics data. DestVI is available as part of the open-source software package scvi-tools (https://scvi-tools.org). DestVI识别空间转录组学数据中细胞类型的连续谱。DestVI作为开源软件包scvi-tools的一部分提供
Here we present spateo, a open source framework that welcomes community contributions for quantitative spatiotemporal modeling of spatial transcriptomics. 在此我们介绍spateo,一个欢迎社区贡献的开源框架,用于空间转录组学的定量时空建模
SpaGene: Scalable and model-free detection of spatial patterns and colocalization SpaGene:可扩展且无模型的空间模式和共定位检测
Palo: Spatially-aware color palette optimization for single-cell and spatial data Palo:单细胞和空间数据的空间感知调色板优化
squidpy - paper - code: Squidpy: a scalable framework for spatial omics analysis squidpy - 论文 - 代码:Squidpy:空间组学分析的可扩展框架
ncem - paper - code: Learning cell communication from spatial graphs of cells ncem - 论文 - 代码:从细胞空间图学习细胞通讯
Spatially informed cell-type deconvolution for spatial transcriptomics Here, we introduce a deconvolution method, conditional autoregressive-based deconvolution (CARD), that combines cell-type-specific expression information from single-cell RNA sequencing (scRNA-seq) with correlation in cell-type composition across tissue locations. 空间转录组学的空间信息细胞类型解卷积 在此,我们介绍一种解卷积方法,基于条件自回归的解卷积(CARD),它将单细胞RNA测序(scRNA-seq)的细胞类型特异性表达信息与组织位置间细胞类型组成的相关性相结合
Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace 使用scSpace从单细胞RNA测序数据重建细胞伪空间
SpatialCorr: Identifying Gene Sets with Spatially Varying Correlation Structure SpatialCorr:识别具有空间变异相关结构的基因集
RCTD: Robust decomposition of cell type mixtures in spatial transcriptomics RCTD:空间转录组学中细胞类型混合物的稳健分解
Supervised spatial inference of dissociated single-cell data with SageNet: a graph neural network approach that spatially reconstructs dissociated single cell data using one or more spatial references. 使用SageNet对解离单细胞数据进行监督空间推断:一种图神经网络方法,使用一个或多个空间参考对解离的单细胞数据进行空间重建
SpotClean adjusts for spot swapping in spatial transcriptomics data: A quality issue in spatial transcriptomics data, and a statistical method to adjust for it. SpotClean调整空间转录组学数据中的斑点交换:空间转录组学数据中的质量问题及其统计调整方法
Nonnegative spatial factorization 非负空间因式分解
SPICEMIX: Integrative single-cell spatial modeling of cell identity SPICEMIX:细胞身份的整合单细胞空间建模
De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc 使用DeepLinc从单细胞空间转录组数据从头重建细胞相互作用景观
Bayesian Modeling of Spatial Molecular Profiling Data via Gaussian Process 通过高斯过程进行空间分子分析数据的贝叶斯建模
Decoding functional cell-cell communication events by multi-view graph learning on spatial transcriptomics 通过空间转录组学的多视图图学习解码功能性细胞-细胞通讯事件
BANKSY unifies cell-type clustering and domain segmentation by constructing a product space of cells' own and microenvironment transcriptomes. BANKSY通过构建细胞自身和微环境转录组的乘积空间统一细胞类型聚类和域分割
StereoCell - StereoCell enables high accuracy single cell segmentation for spatial transcriptomic dataset StereoCell - StereoCell实现空间转录组数据集的高精度单细胞分割
cell2location cell2location
STcEM - Spatial Transcriptomics-correlated Electron Microscopy maps transcriptional and ultrastructural responses to brain injury STcEM - 空间转录组学相关电子显微镜图谱脑损伤的转录和超微结构反应
spacedeconv is a unified interface to 31 deconvolution tools with a focus on spatial transcriptomics datasets. The package is able to directly estimate cell type proportions of immune cells and can deconvolute any cell type if an annotation single-cell reference dataset is available spacedeconv是31种解卷积工具的统一接口,专注于空间转录组学数据集。该软件包能够直接估计免疫细胞的细胞类型比例,如果有注释的单细胞参考数据集,可以解卷积任何细胞类型
A statistical method to uncover gene expression changes in spatial transcriptomics Cell type-specific inference of differential expression (C-SIDE) is a statistical model that identifies which genes (within a determined cell type) are differentially expressed on the basis of spatial position, pathological changes or cell–cell interactions. 揭示空间转录组学中基因表达变化的统计方法 细胞类型特异性差异表达推断(C-SIDE)是一个统计模型,识别哪些基因(在确定的细胞类型内)基于空间位置、病理变化或细胞-细胞相互作用而差异表达
Niche differential gene expression analysis in spatial transcriptomics data identifies context-dependent cell-cell interactions 空间转录组学数据中的生态位差异基因表达分析识别上下文依赖的细胞-细胞相互作用
BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis BANKSY统一细胞分型和组织域分割,实现可扩展的空间组学数据分析
Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST 使用PRECAST进行概率嵌入、聚类和比对以整合空间转录组学数据
High-resolution alignment of single-cell and spatial transcriptomes with CytoSPACE 使用CytoSPACE进行单细胞和空间转录组的高分辨率比对
Search and Match across Spatial Omics Samples at Single-cell Resolution 单细胞分辨率下跨空间组学样本的搜索和匹配
Alignment of spatial genomics data using deep Gaussian processes 使用深度高斯过程进行空间基因组数据比对
Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor–immune hubs Starfysh整合空间转录组和组织学数据以揭示异质性肿瘤-免疫枢纽
Alignment and integration of spatial transcriptomics data 空间转录组学数据的比对和整合
BASS: multi-scale and multi-sample analysis enables accurate cell type clustering and spatial domain detection in spatial transcriptomic studies BASS:多尺度和多样本分析实现空间转录组学研究中准确的细胞类型聚类和空间域检测
DeepST: A versatile graph contrastive learning framework for spatially informed clustering, integration, and deconvolution of spatial transcriptomics DeepST:用于空间转录组学空间信息聚类、整合和解卷积的多功能图对比学习框架
De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc 使用DeepLinc从单细胞空间转录组数据从头重建细胞相互作用景观
Modeling intercellular communication in tissues using spatial graphs of cells 使用细胞空间图建模组织中的细胞间通讯
Accurate inference of genome-wide spatial expression with iSpatial 使用iSpatial进行全基因组空间表达的准确推断
VITESSCE Visual Integration Tool for Exploration of Spatial Single-Cell Experiments VITESSCE 空间单细胞实验探索的可视化整合工具
好咯,真诚如我,是不会收费或者要你转发点赞才给资料的,算是日常修功德吧。