首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >SIGMOD 2025 | 时空数据(Spatial-temporal)论文总结

SIGMOD 2025 | 时空数据(Spatial-temporal)论文总结

作者头像
时空探索之旅
发布2025-07-09 10:06:59
发布2025-07-09 10:06:59
1110
举报
文章被收录于专栏:时空探索之旅时空探索之旅

SIGMOD 2025于6月22号-6月27号在德国柏林举行( Berlin, Germany)

本文总结了SIGMOD 2025有关时空数据(spatial-temporal data)的相关论文,主要包含空间关键字查询,最短路查询,地图匹配等内容,如有疏漏,欢迎大家补充。笔者对DB了解浅薄,如有表述不当,欢迎大家指正。

1. OBIR-tree: Secure and Efficient Oblivious Index for Spatial Keyword Queries2. U-DPAP: Utility-aware Efficient Range Counting on Privacy-preserving Spatial Data Federation3. Finding Logic Bugs in Spatial Database Engines via Affine Equivalent Inputs4. BT-Tree: A Reinforcement Learning Based Index for Big Trajectory Data5. Divide-and-Conquer: Scalable Shortest Path Counting on Large Road Networks6. Efficient Indexing for Flexible Label-Constrained Shortest Path Queries in Road Networks7. RLOMM: An Efficient and Robust Online Map Matching Framework with Reinforcement Learning8. RLER-TTE: An Efficient and Effective Framework for En Route Travel Time Estimation with Reinforcement Learning

图片
图片

点击文末阅读原文跳转笔者知乎链接(跳转论文链接更方便)。

1 OBIR-tree: Secure and Efficient Oblivious Index for Spatial Keyword Queries

链接https://dl.acm.org/doi/10.1145/3709708

作者:Zikai Ye (Xidian University)*; Xiangyu Wang (Xidian University); Zesen Liu (Xidian University); DAN ZHU (Northwestern Polytechnical University); Jianfeng Ma (Xidian University)

关键词:空间关键字查询,安全性,高效性

2 U-DPAP: Utility-aware Efficient Range Counting on Privacy-preserving Spatial Data Federation

链接https://dl.acm.org/doi/10.1145/3714333

作者:yahong chen (Central China Normal University)*; Xiaoyi Pang (Zhejiang University); Xiaoguang Li (Xidian University); Hanyi Wang (China Mobile (Suzhou) Software Technology Co., Ltd.); Ben Niu (Institute of Information Engineering, CAS, China); Shengnan Hu (Central China Normal University)

关键词:范围计数,差分隐私,空间数据联邦

3 Finding Logic Bugs in Spatial Database Engines via Affine Equivalent Inputs

链接https://dl.acm.org/doi/10.1145/3698810

作者:Wenjing Deng (East China Normal University)*; Qiuyang Mang (The Chinese University of Hong Kong, Shenzhen); Chengyu Zhang (ETH Zurich); Manuel Rigger (National University of Singapore)

关键词:空间查询处理,逻辑错误

图片
图片

4 BT-Tree: A Reinforcement Learning Based Index for Big Trajectory Data

链接https://dl.acm.org/doi/10.1145/3677130

作者:Tu Gu (Nanyang Technological University)*; Kaiyu Feng (Beijing Institute of Technology); Jingyi Yang (Nanyang Technological University); Gao Cong (Nanyang Technological Univesity); Cheng Long (Nanyang Technological University); Rui Zhang (ruizhang.info)

关键词:时空查询处理,学习索引(learned index),强化学习

图片
图片

5 Divide-and-Conquer: Scalable Shortest Path Counting on Large Road Networks

链接https://dl.acm.org/doi/10.1145/3725400

作者:Muhammad Farhan (Australian National University)*; Henning Koehler (Massey University); Qing Wang (ANU)

关键词:最短路径;计数;顶点划分;2 跳标记

图片
图片

6 Efficient Indexing for Flexible Label-Constrained Shortest Path Queries in Road Networks

链接https://dl.acm.org/doi/10.1145/3725402

作者:Libin Wang (Hong Kong University of Science and Technology)*; Raymond Chi-Wing Wong (Hong Kong University of Science and Technology)

关键词:点对点最短路径查询,索引

7 RLOMM: An Efficient and Robust Online Map Matching Framework with Reinforcement Learning

链接https://dl.acm.org/doi/10.1145/3725346

作者:Minxiao Chen (Beijing University of Posts and Telecommunications)*; Haitao Yuan (Nanyang Technological University); Nan Jiang (Beijing University of Posts and Telecommunications); Zhihan Zheng (Beijing University of Posts and Telecommunications); Sai Wu (Zhejiang University); Ao Zhou (Beijing University of Posts and Telecommunications); Shangguang Wang (State Key Laboratory of Networking and Switching Technology)

关键词:地图匹配,强化学习

图片
图片

8 RLER-TTE: An Efficient and Effective Framework for En Route Travel Time Estimation with Reinforcement Learning

链接https://dl.acm.org/doi/10.1145/3709721

作者:Zhihan Zheng (Beijing University of Posts and Telecommunications)*; Haitao Yuan (Nanyang Technological University); Minxiao Chen (Beijing University of Posts and Telecommunications); Shangguang Wang (State Key Laboratory of Networking and Switching Technology)

关键词:行程时间估计,强化学习

图片
图片

相关链接

SIGMOD 2025 Accepted Papers:

https://2025.sigmod.org/sigmod_papers.shtml

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2025-07-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 时空探索之旅 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 OBIR-tree: Secure and Efficient Oblivious Index for Spatial Keyword Queries
  • 2 U-DPAP: Utility-aware Efficient Range Counting on Privacy-preserving Spatial Data Federation
  • 3 Finding Logic Bugs in Spatial Database Engines via Affine Equivalent Inputs
  • 4 BT-Tree: A Reinforcement Learning Based Index for Big Trajectory Data
  • 5 Divide-and-Conquer: Scalable Shortest Path Counting on Large Road Networks
  • 6 Efficient Indexing for Flexible Label-Constrained Shortest Path Queries in Road Networks
  • 7 RLOMM: An Efficient and Robust Online Map Matching Framework with Reinforcement Learning
  • 8 RLER-TTE: An Efficient and Effective Framework for En Route Travel Time Estimation with Reinforcement Learning
  • 相关链接
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档