首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >智能体(AI Agent)开发实战之【LangChain】(一)接入大模型输出结果

智能体(AI Agent)开发实战之【LangChain】(一)接入大模型输出结果

原创
作者头像
我和AI的成长
发布2025-06-12 13:49:59
发布2025-06-12 13:49:59
9592
举报

LangChain 是一个强大的开源框架,专为构建与大语言模型(LLMs)相关的应用而设计。通过将多个 API、数据源和外部工具无缝集成,LangChain 能帮助开发者更高效地构建智能应用。

一、环境准备

   安装LangChain,langChain-core等库,我安装时LangChain版本是:0.3.21,langChain-core版本是当时最新版本:0.3.48。因为一些常用的大模型都遵循 OpenAI API 规范,还需要安装OPENAI相关库。如果使用国内的大模型也要安装相应的库如:DeepSeek库。如以下相关截图:

二、编写代码接入开源大模型并输出结果

因相关原因,访问国外开源大模型有限制。我通过对比和实践,选择了国内的开源大模型Qwen并使用国内的一个平台API来实现接入大模型并输出结果。

1.导入必要的库和类

代码语言:txt
复制
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage

2.配置ChatOpenAI实例

代码语言:txt
复制
chat_model = ChatOpenAI(
    #model="deepseek-chat",
    #model = "Pro/deepseek-ai/DeepSeek-R1",
    #model = "Qwen/Qwen2.5-72B-Instruct",
    model = "Qwen/Qwen2.5-7B-Instruct",
    openai_api_key=DEEPSEEK_API_KEY,
    openai_api_base=DEEPSEEK_API_BASE,
    temperature=0.7, 
    max_tokens=500, 
    stream=False 
    )

3.构建消息列表

代码语言:txt
复制
messages = [
    SystemMessage(content="你是一个知识渊博的助手,能回答各种问题。"),
    HumanMessage(content="介绍一下长城")
]

4.调用大模型并获取返回结果

代码语言:txt
复制
response = chat_model.invoke(messages)
# 输出模型的响应结果
print(response.content)

5.ChatOpenAI类的自定义配置参数说明

model_name:指定要使用的具体模型名称,例如ChatOpenAI中可以指定model_name="gpt - 3.5 - turbo"

temperature:控制生成文本的随机性,取值范围在 0 到 1 之间,值越大生成的文本越随机

max_tokens:限制生成文本的最大 token 数量

stream:如果设置为True(默认值是False),模型将以流式输出的方式返回结果,即边生成边返回,而不是等整个生成过程结束后再返回,适用于需要实时获取生成结果的场景。

6.运行代码输出结果

三、总结

LangChain 提供了丰富的接口用于和不同的大模型集成和交互,可帮助开发者轻松地构建出功能强大的对话式智能应用

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档