免责声明~ 任何文章不要过度深思! 万事万物都经不起审视,因为世上没有同样的成长环境,也没有同样的认知水平,更「没有适用于所有人的解决方案」; 不要急着评判文章列出的观点,只需代入其中,适度审视一番自己即可,能「跳脱出来从外人的角度看看现在的自己处在什么样的阶段」才不为俗人。 怎么想、怎么做,全在乎自己「不断实践中寻找适合自己的大道」
LLM大模型与AI应用的粘合剂。
LangChain是一个开源框架,旨在简化使用大型语言模型构建端到端应用程序的过程,也是ReAct(reason+act)论文的落地实现。
2022年10月25日开源 54K+ star 种子轮一周1000万美金,A轮2500万美金
11个月里累计发布200多次,提交4000多次代码
模型 A
构造提示词 -> LLMs -> 模型生产结果 -> 结果处理 -> 最终结果
模型 B
构造提示词 -> LLMs -> 模型生产结果 -> 结果处理 -> 最终结果
模型 N...
构造提示词 -> LLMs -> 模型生产结果 -> 结果处理 -> 最终结果
+------------+ +------------------------+ +------------+
| | 输入 | +--------------+ | 输入 | |
| 用户输入 | -------------> | | prompt | | -------------> | LLMs |
| | | +--------------+ | | |
| | | | | |
| | 输出 | +--------------+ | 输出 | |
| | <------------- | | Output | | <------------- | |
+------------+ | | Parsers | | +------------+
| +--------------+ |
+------------------------+
Langchain I/O系统
提供了目前市面上几乎所有 LLM 的通用接口,同时还提供了 提示词 的管理和优化能力,同时也提供了非常多的相关适用工具,以方便开发人员利用 LangChain 与 LLMs 进行交互。
LangChain 把 提示词、大语言模型、结果解析封装成 Chain,并提供标准的接口,以便允许不同的Chain形成交互序列,为 AI 原生应用提供了端到端的 Chain
检索增强生成式,一种解决预训练语料数据无法及时更新而带来的回答内容陈旧的方式。LangChain提供支持 检索增强生成式的Chain。使用时,这些 Chain 会首先与外部数据源进行交互以获得对应数据,然后再利用获得的数据与 LLMs 进行交互。典型应用场暴如:基于特定数据源的问答机器人。
对于一个任务,代理主要涉及让 LLMs 来对任务进行拆分、执行该行动、并观察执行结果,代理 会重复执行这个过程,直到该任务完成为止。LangChain 为 代理 提供了标准接口,可供选择的代理,以及一些端到端的代理的示例
chain 或 agent 调用之间的状态持久化。LangChain 为 内存 提供了准接口三并提供了↖系烈COn的 内存 实现
LangChain 还提供了非常多的评估能力以允许我们可以更方便的对 LLMs 进行评估
= 3.8.1,推荐 3.10.12 https://www.python.org/downloads/
参阅:安装使用教程
官网:https://python.langchain.com
命令安装
$ pip install langchain
$ conda install langchain -c conda-forge
也可以使用VS code/PyCharm的jupyter插件启动。
完整专栏内容,尽在编程严选网免费阅读学习:
编程严选网:
http://www.javaedge.cn/
专注分享软件开发全生态相关技术文章
、视频教程
资源、热点资讯等,全站资源免费学习,快来看看吧~
欢迎长按图片加好友
,我会第一时间和你分享软件行业趋势
,面试资源
,学习方法
等等。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有