Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >初识LangChain

初识LangChain

作者头像
JavaEdge
发布于 2025-06-01 01:21:27
发布于 2025-06-01 01:21:27
12700
代码可运行
举报
文章被收录于专栏:JavaEdgeJavaEdge
运行总次数:0
代码可运行

免责声明~ 任何文章不要过度深思! 万事万物都经不起审视,因为世上没有同样的成长环境,也没有同样的认知水平,更「没有适用于所有人的解决方案」; 不要急着评判文章列出的观点,只需代入其中,适度审视一番自己即可,能「跳脱出来从外人的角度看看现在的自己处在什么样的阶段」才不为俗人。 怎么想、怎么做,全在乎自己「不断实践中寻找适合自己的大道」

LLM大模型与AI应用的粘合剂。

1 langchain是什么以及发展过程

LangChain是一个开源框架,旨在简化使用大型语言模型构建端到端应用程序的过程,也是ReAct(reason+act)论文的落地实现。

b36c6ae450c095205cad2a351123cf23.png
b36c6ae450c095205cad2a351123cf23.png

2022年10月25日开源 54K+ star 种子轮一周1000万美金,A轮2500万美金

11个月里累计发布200多次,提交4000多次代码

5442e70ae338af9451c306b0fd74f37c.png
5442e70ae338af9451c306b0fd74f37c.png

2 langchain能做什么和能力一览

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
模型 A
构造提示词 -> LLMs -> 模型生产结果 -> 结果处理 -> 最终结果

模型 B
构造提示词 -> LLMs -> 模型生产结果 -> 结果处理 -> 最终结果

模型 N...
构造提示词 -> LLMs -> 模型生产结果 -> 结果处理 -> 最终结果
Langchain I/O系统
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
+------------+                +------------------------+                +------------+
|            |       输入      |    +--------------+    |      输入       |            |
|  用户输入  | -------------> |    |    prompt    |    | -------------> |    LLMs      |
|            |                |    +--------------+    |                |            |
|            |                |                        |                |            |
|            |       输出      |    +--------------+    |      输出       |            |
|            | <------------- |    |    Output    |    | <------------- |            |
+------------+                |    |    Parsers   |    |                +------------+
                              |    +--------------+    |
                              +------------------------+
                                   Langchain I/O系统
  1. 解决大模型各种问题的提示词工程方案之一
  2. 提供了与LLMs交互的各种组件,极大提升开发效率
  3. 可以以文件方式加载提示词、链等,方便共享提示词和做提示词版本管理
  4. 提供丰富的链式工具箱
LLMs & Prompt

提供了目前市面上几乎所有 LLM 的通用接口,同时还提供了 提示词 的管理和优化能力,同时也提供了非常多的相关适用工具,以方便开发人员利用 LangChain 与 LLMs 进行交互。

Chains

LangChain 把 提示词、大语言模型、结果解析封装成 Chain,并提供标准的接口,以便允许不同的Chain形成交互序列,为 AI 原生应用提供了端到端的 Chain

Retrieval-Augemented Generation

检索增强生成式,一种解决预训练语料数据无法及时更新而带来的回答内容陈旧的方式。LangChain提供支持 检索增强生成式的Chain。使用时,这些 Chain 会首先与外部数据源进行交互以获得对应数据,然后再利用获得的数据与 LLMs 进行交互。典型应用场暴如:基于特定数据源的问答机器人。

Agent

对于一个任务,代理主要涉及让 LLMs 来对任务进行拆分、执行该行动、并观察执行结果,代理 会重复执行这个过程,直到该任务完成为止。LangChain 为 代理 提供了标准接口,可供选择的代理,以及一些端到端的代理的示例

Memory

chain 或 agent 调用之间的状态持久化。LangChain 为 内存 提供了准接口三并提供了↖系烈COn的 内存 实现

Evaluation

LangChain 还提供了非常多的评估能力以允许我们可以更方便的对 LLMs 进行评估

3 langchain的优劣

3.1 优点
  • 平台大语言模型调用能力,支持多平台多模型调用,为用户提供灵活选择
  • 轻量级SDK(python、javas生一起将LLMs与传统编程语言集成持
  • 多模态支持,提供多模态数据支持,如图像、音频等
3.2 缺点
  • 学习曲线相对较高
  • 文档相对不完善,官方文档不是很完善
  • 缺乏大型工业化应用实践

4 langchain开发环境搭建

4.1 为啥用Python?
  • 高级的接近人类语言的编程语言,易于学习
  • 动态语言
  • 直译式语言,可以跳过编译逐行执行代码广泛应用于web应用、软件、数据科学和机器学习
  • AI方向的主流语言
  • 活跃的python社区
  • 数据巨大且丰富的库
4.2 环境要求
Python

= 3.8.1,推荐 3.10.12 https://www.python.org/downloads/

c8cea13b547a765b5d50299f321e13f8.png
c8cea13b547a765b5d50299f321e13f8.png
安装 jupyter

参阅:安装使用教程

安装 LangChain

官网:https://python.langchain.com

命令安装

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
$ pip install langchain
$ conda install langchain -c conda-forge

也可以使用VS code/PyCharm的jupyter插件启动。

完整专栏内容,尽在编程严选网免费阅读学习:

7f67d736f4cfdcc58cd6a62be7a09ddf.png
7f67d736f4cfdcc58cd6a62be7a09ddf.png

写在最后

编程严选网http://www.javaedge.cn/ 专注分享软件开发全生态相关技术文章视频教程资源、热点资讯等,全站资源免费学习,快来看看吧~

0141a82ae87b7cd90bbf4ea6665da6ed.png
0141a82ae87b7cd90bbf4ea6665da6ed.png

欢迎长按图片加好友,我会第一时间和你分享软件行业趋势面试资源学习方法等等。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-05-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验