前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >文心一言 VS 讯飞星火 VS chatgpt (347)-- 算法导论23.2 6题

文心一言 VS 讯飞星火 VS chatgpt (347)-- 算法导论23.2 6题

作者头像
福大大架构师每日一题
发布于 2024-09-18 08:24:05
发布于 2024-09-18 08:24:05
11600
代码可运行
举报
运行总次数:0
代码可运行

六、假定一个图中所有的边权重均匀分布在半开区间[0,1)内。Prim算法和Kruskal算法哪一个可以运行得更快?如果要写代码,请用go语言。

文心一言:

在比较Prim算法和Kruskal算法在特定条件下的性能时,我们需要考虑几个因素,主要是图的表示方式、边的数量、顶点的数量以及边的权重分布。由于在这个问题中,所有的边权重都均匀分布在半开区间[0,1)内,且我们并没有明确图的密度(即边数与顶点数的关系),但我们可以基于算法的基本性质给出一些一般性的分析。

算法分析

  1. 1. Prim算法
    • • Prim算法适用于边稠密的图,因为它从某个顶点开始,逐步增加边来构建最小生成树。
    • • Prim算法的时间复杂度通常是O(V^2)在简单的实现中(使用邻接矩阵),或者在使用优先队列(如斐波那契堆)时可以达到O((V+E)logV)。
    • • Prim算法在边权重分布均匀时不会特别受益或受损,因为它的性能主要取决于图的顶点数和边数。
  2. 2. Kruskal算法
    • • Kruskal算法适用于边稀疏的图,因为它按照边的权重顺序添加边。
    • • Kruskal算法的时间复杂度主要是O(ElogE),因为它需要对边进行排序。
    • • 在边权重均匀分布时,排序步骤的性能不会受到特别影响,但如果E(边数)远小于V^2(可能的边数),则Kruskal可能会更高效。

代码实现(Go语言)

由于直接比较两种算法在特定条件下的性能(如运行时间)需要具体的图数据和实验环境,这里我将给出两种算法的Go语言实现框架,但不包括性能测量代码。

Kruskal算法(简化版)
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
package main

import(
"container/heap"
"fmt"
)

typeEdgestruct{
    weight float64
    u, v   int
}

typePriorityQueue[]*Edge

func (pq PriorityQueue)Len()int{returnlen(pq)}
func (pq PriorityQueue)Less(i, j int)bool{
return pq[i].weight < pq[j].weight
}
func (pq PriorityQueue)Swap(i, j int){
    pq[i], pq[j]= pq[j], pq[i]
}

func (pq *PriorityQueue)Push(x interface{}){
    item := x.(*Edge)
*pq =append(*pq, item)
}

func (pq *PriorityQueue)Pop()interface{}{
    old :=*pq
    n :=len(old)
    item := old[n-1]
*pq = old[0: n-1]
return item
}

// Kruskal implementation would go here, assuming you have a UnionFind data structure

func main(){
// Example usage: initialize graph, edges, and run Kruskal
    fmt.Println("Kruskal Algorithm in Go")
}
Prim算法(简化版,使用邻接矩阵)
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
package main

import(
"fmt"
"math"
)

func prim(graph [][]float64, numVertices int)float64{
// This is a very simplified version, assuming graph is represented as an adjacency matrix
    inMST :=make([]bool, numVertices)
    key :=make([]float64, numVertices)
    parent :=make([]int, numVertices)

for i :=0; i < numVertices; i++{
        key[i]= math.Inf(1)
}
    key[0]=0

for count :=0; count < numVertices-1; count++{
// Find the vertex u with the minimum key value
        u :=-1
        min := math.Inf(1)
for v :=0; v < numVertices; v++{
if graph[v][v]==0{// Assuming diagonal is 0 for simplicity
continue
}
if!inMST[v]&& graph[v][u]>0&& graph[v][u]< min {
                u = v
                min = graph[v][u]
}
}

// Add vertex u to the MST Set
        inMST[u]=true

// Update key values of the adjacent vertices of the picked vertex u
// and update their parent also
for v :=0; v < numVertices; v++{
if graph[u][v]>0&& graph[u][v]< key[v]&&!inMST[v]{
                parent[v]= u
                key[v]= graph[u][v]
}
}
}

// Calculate total weight of the MST
    mstWeight :=0.0
for i :=1; i < numVertices; i++{
        mstWeight += key[i]
}
return mstWeight
}

func main(){
// Example usage: initialize graph (adjacency matrix) and run Prim
    fmt.Println("Prim Algorithm in Go")
}

注意:上面的Prim算法实现是基于邻接矩阵的,它对于大型稀疏图可能不是最高效的。对于稀疏图,使用邻接表和优先队列(如斐波那契堆或二叉堆)会更高效。同样,Kruskal算法的实现中缺少了并查集(UnionFind)的实现,这是构建最小生成树的关键部分。

讯飞星火:

在图的所有边权重均匀分布在半开区间[0,1)内的情况下,Prim算法和Kruskal算法的性能差异不大。因为在这种情况下,两种算法的时间复杂度都是O(ElogE)或O(ElogV),其中E是边的数量,V是顶点的数量。

然而,Prim算法通常在稠密图中表现更好,因为它使用优先队列来存储待处理的边,这使得它在每次迭代时都能快速找到最小权重的边。而Kruskal算法则需要对所有的边进行排序,这在边数较多的情况下可能会比较耗时。

以下是用Go语言实现的Prim算法:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
package main

import(
"fmt"
"container/heap"
)

typeEdgestruct{
    u, v, weight int
}

typePriorityQueue[]*Edge

func (pq PriorityQueue)Len()int{returnlen(pq)}

func (pq PriorityQueue)Less(i, j int)bool{
return pq[i].weight < pq[j].weight
}

func (pq PriorityQueue)Swap(i, j int){
    pq[i], pq[j]= pq[j], pq[i]
}

func (pq *PriorityQueue)Push(x interface{}){
    item := x.(*Edge)
*pq =append(*pq, item)
}

func (pq *PriorityQueue)Pop()interface{}{
    old :=*pq
    n :=len(old)
    item := old[n-1]
*pq = old[0: n-1]
return item
}

func prim(graph [][]int, start int)int{
    n :=len(graph)
    visited :=make([]bool, n)
    visited[start]=true
    pq :=&PriorityQueue{}
    heap.Init(pq)

for _, edge :=range graph[start]{
        heap.Push(pq,&Edge{start, edge[0], edge[1]})
}

    totalWeight :=0
for pq.Len()>0{
        minEdge := heap.Pop(pq).(*Edge)
if visited[minEdge.v]{
continue
}
        visited[minEdge.v]=true
        totalWeight += minEdge.weight

for _, edge :=range graph[minEdge.v]{
if!visited[edge[0]]{
                heap.Push(pq,&Edge{minEdge.v, edge[0], edge[1]})
}
}
}

return totalWeight
}

func main(){
    graph :=[][][]int{
{{1,2},{3,6}},
{{0,2},{2,3}},
{{1,3},{0,6}},
{{2,3}},
}
    start :=0
    fmt.Println("Minimum spanning tree weight:", prim(graph, start))
}

这段代码实现了Prim算法,用于求解给定图的最小生成树的总权重。注意,这里的图表示为邻接表,每个节点的邻居及其边的权重都存储在一个二维切片中。

360智脑:

Prim算法和Kruskal算法都是用于解决最小生成树问题的经典算法,但它们的运行效率取决于图的具体情况和实现的细节。

Prim算法是一种贪心算法,它从一个顶点开始,每次选择与当前生成树相邻的最小权重边加入到生成树中,直到所有顶点都被包含在内。Prim算法的实现通常使用优先队列(例如二叉堆)来维护候选边,其时间复杂度在最坏情况下为O(E log E),其中E是边的数量。

Kruskal算法也是一种贪心算法,但它处理的是边而不是顶点。它首先对所有边按照权重进行排序,然后从小到大依次考虑每条边,如果这条边的两个端点不在同一个连通分量中,则将这条边加入到生成树中。Kruskal算法的时间复杂度主要取决于排序操作,最坏情况下也是O(E log E)。

在边权重均匀分布的情况下,两种算法的时间复杂度理论上是一样的。然而,实际运行速度可能会受到具体实现、数据结构的选择以及计算机硬件等因素的影响。

下面是一个使用Go语言实现的Prim算法的示例代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
package main

import(
"container/heap"
"fmt"
)

// 定义一个优先队列
typeEdgeHeap[]Edge

func (h EdgeHeap)Len()int{returnlen(h)}
func (h EdgeHeap)Less(i, j int)bool{return h[i].Weight< h[j].Weight}
func (h EdgeHeap)Swap(i, j int){ h[i], h[j]= h[j], h[i]}

func (h *EdgeHeap)Push(x interface{}){
*h =append(*h, x.(Edge))
}

func (h *EdgeHeap)Pop()interface{}{
    old :=*h
    n :=len(old)
    x := old[n-1]
*h = old[0: n-1]
return x
}

// 定义一个边
typeEdgestruct{
Toint
Weightfloat64
}

// 定义一个图
typeGraphstruct{
Verticesint
Edges[][]Edge
}

// Prim算法函数
func Prim(g Graph)[]Edge{
    mst :=make([]Edge,0)// 最小生成树的边集合
    inMST :=make([]bool, g.Vertices)// 记录顶点是否已经在最小生成树中
    pq :=&EdgeHeap{}// 优先队列

// 从第一个顶点开始
    inMST[0]=true
for _, edge :=range g.Edges[0]{
        heap.Push(pq, edge)
}

for pq.Len()>0{
// 取出权重最小的边
        minEdge := heap.Pop(pq).(Edge)
if inMST[minEdge.To]{
continue
}
// 将该边加入最小生成树
        mst =append(mst, minEdge)
        inMST[minEdge.To]=true
// 将与新加入的顶点相连的边加入优先队列
for _, edge :=range g.Edges[minEdge.To]{
if!inMST[edge.To]{
                heap.Push(pq, edge)
}
}
}

return mst
}

func main(){
// 创建一个图
    g :=Graph{
Vertices:5,
Edges:[][]Edge{
{{1,0.3},{2,0.1}},
{{0,0.3},{2,0.4},{3,0.6}},
{{0,0.1},{1,0.4},{3,0.2},{4,0.7}},
{{1,0.6},{2,0.2},{4,0.5}},
{{2,0.7},{3,0.5}},
},
}

// 运行Prim算法
    mst :=Prim(g)
    fmt.Println("Minimum Spanning Tree:", mst)
}

请注意,这个示例代码仅用于演示Prim算法的基本原理,并没有进行性能优化。在实际应用中,可能需要根据具体情况对算法进行调整和优化。同样,Kruskal算法的实现也可以通过类似的步骤来完成,但需要额外的数据结构(如并查集)来管理连通分量。

智谱清言:

在比较Prim算法和Kruskal算法的运行速度时,我们需要考虑它们的时间复杂度。 Prim算法的时间复杂度通常是O(E log V),其中E是边的数量,V是顶点的数量。这是因为Prim算法在每一步都会从候选边集合中选择最小权重的边,这通常需要使用优先队列(如二叉堆)来实现。 Kruskal算法的时间复杂度是O(E log E)或者O(E log V),因为需要对所有边按权重进行排序。然而,在实际应用中,如果边的数量接近顶点的数量,那么这两个算法的时间复杂度可以认为是相近的。 但是,如果图是稠密的,即边的数量接近顶点的平方,那么Prim算法可能会更快,因为它不需要对所有的边进行排序。在边权均匀分布的情况下,这个特性不会改变算法的时间复杂度,但实际运行时间可能会有所不同。 在Go语言中,Prim算法和Kruskal算法的实现取决于图的数据结构。下面是两个算法的Go语言伪代码示例。 首先是Prim算法的Go语言伪代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
package main
import(
"container/heap"
"fmt"
)
typeEdgestruct{
Fromint
Toint
Weightfloat64
}
typePriorityQueue[]*Edge
func (pq PriorityQueue)Len()int{returnlen(pq)}
func (pq PriorityQueue)Less(i, j int)bool{return pq[i].Weight< pq[j].Weight}
func (pq PriorityQueue)Swap(i, j int){ pq[i], pq[j]= pq[j], pq[i]}
func (pq *PriorityQueue)Push(x interface{}){
    item := x.(*Edge)
*pq =append(*pq, item)
}
func (pq *PriorityQueue)Pop()interface{}{
    old :=*pq
    n :=len(old)
    item := old[n-1]
*pq = old[0: n-1]
return item
}
func prim(graph [][]Edge, start int)[]Edge{
var mst []Edge
    inMST :=make(map[int]bool)
    pq :=make(PriorityQueue,0)
    heap.Init(&pq)
// Start from the given node
    inMST[start]=true
for _, edge :=range graph[start]{
        heap.Push(&pq,&edge)
}
for pq.Len()>0{
        edge := heap.Pop(&pq).(*Edge)
if inMST[edge.To]{
continue
}
        mst =append(mst,*edge)
        inMST[edge.To]=true
for _, nextEdge :=range graph[edge.To]{
if!inMST[nextEdge.To]{
                heap.Push(&pq,&nextEdge)
}
}
}
return mst
}
func main(){
// Example usage of Prim's algorithm
// Define your graph as an adjacency list here
// graph := [][]Edge{{...}, ..., {...}}
// mst := prim(graph, 0)
// fmt.Println(mst)
}

接下来是Kruskal算法的Go语言伪代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
package main
import(
"sort"
)
typeEdgestruct{
Fromint
Toint
Weightfloat64
}
typeUnionFindstruct{
    parent []int
    rank   []int
}
func (uf *UnionFind)Find(node int)int{
if uf.parent[node]!= node {
        uf.parent[node]= uf.Find(uf.parent[node])
}
return uf.parent[node]
}
func (uf *UnionFind)Union(node1, node2 int){
    root1 := uf.Find(node1)
    root2 := uf.Find(node2)
if root1 != root2 {
if uf.rank[root1]> uf.rank[root2]{
            uf.parent[root2]= root1
}elseif uf.rank[root1]< uf.rank[root2]{
            uf.parent[root1]= root2
}else{
            uf.parent[root2]= root1
            uf.rank[root1]++
}
}
}
func kruskal(edges []Edge, numVertices int)[]Edge{
    sort.Slice(edges,func(i, j int)bool{
return edges[i].Weight< edges[j].Weight
})
var mst []Edge
    uf :=UnionFind{
        parent:make([]int, numVertices),
        rank:make([]int, numVertices),
}
for i :=0; i < numVertices; i++{
        uf.parent[i]= i
}
for _, edge :=range edges {
if uf.Find(edge.From)!= uf.Find(edge.To){
            mst =append(mst, edge)
            uf.Union(edge.From, edge.To)
}
}
return mst

天工:

在图的最小生成树(MST)问题中,Prim算法和Kruskal算法的效率主要依赖于图的密度(即边的数量与顶点数量的关系)以及实现细节。对于边权重在[0,1)区间内均匀分布的图,这种权重分布特性对算法选择的影响不大,因为算法的时间复杂度主要由图的结构决定,而不是边的权重。

  • Prim算法的时间复杂度通常表示为O(E + V log V)或O(E log V),取决于使用的优先队列实现。使用二叉堆时,时间复杂度为O((V + E) log V),使用斐波那契堆则可以达到O(E + V log V)。
  • Kruskal算法的时间复杂度为O(E log E),这是因为需要对所有边进行排序。

对于稀疏图(即E << V²),Kruskal算法可能更优。对于稠密图(即E接近V²),Prim算法可能更优。然而,具体哪个更快还依赖于具体实现和数据结构选择。

下面提供Go语言实现的示例代码,但请注意,实际应用中应根据图的具体情况选择合适的数据结构和算法。

Prim算法Go语言实现示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
package main

import(
"container/heap"
"fmt"
)

typeEdgestruct{
    to    int
    weight float64
}

typePriorityQueue[]*Edge

func (pq PriorityQueue)Len()int{returnlen(pq)}
func (pq PriorityQueue)Less(i, j int)bool{
return pq[i].weight < pq[j].weight
}
func (pq PriorityQueue)Swap(i, j int){ pq[i], pq[j]= pq[j], pq[i]}
func (pq *PriorityQueue)Push(x interface{}){
*pq =append(*pq, x.(*Edge))
}
func (pq *PriorityQueue)Pop()interface{}{
    old :=*pq
    n :=len(old)
    x := old[n-1]
*pq = old[0: n-1]
return x
}

func prim(graph [][]Edge, start int)float64{
    visited :=make([]bool,len(graph))
    mstCost :=0.0
    pq :=make(PriorityQueue,0)
    heap.Push(&pq,&graph[start][0])

for pq.Len()>0{
        edge := heap.Pop(&pq).(*Edge)
if visited[edge.to]{
continue
}
        visited[edge.to]=true
        mstCost += edge.weight
for _,next:=range graph[edge.to]{
if!visited[next.to]{
                heap.Push(&pq,&next)
}
}
}
return mstCost
}

func main(){
    graph :=[][]Edge{
{{1,0.5},{2,0.7}},
{{0,0.5},{2,0.2}},
{{0,0.7},{1,0.2}},
}
    fmt.Println(prim(graph,0))
}

Kruskal算法Go语言实现示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
package main

import(
"sort"
"fmt"
)

func find(parent []int, i int)int{
if parent[i]== i {
return i
}
return find(parent, parent[i])
}

func union(parent []int, rank []int, x, y int){
    xroot := find(parent, x)
    yroot := find(parent, y)
if rank[xroot]< rank[yroot]{
        parent[xroot]= yroot
}elseif rank[xroot]> rank[yroot]{
        parent[yroot]= xroot
}else{
        parent[yroot]= xroot
        rank[xroot]++
}
}

func kruskal(edges []struct{ u, v int; weight float64 })float64{
    sort.Slice(edges,func(i, j int)bool{
return edges[i].weight < edges[j].weight
})

    parent :=make([]int,5)
    rank :=make([]int,5)
for i :=range parent {
        parent[i]= i
        rank[i]=0
}

    mstCost :=0.0
for _, edge :=range edges {
        x := find(parent, edge.u)
        y := find(parent, edge.v)
if x != y {
union(parent, rank, x, y)
            mstCost += edge.weight
}
}
return mstCost
}

func main(){
    edges :=[]struct{ u, v int; weight float64}{
{0,1,0.5},
{0,2,0.7},
{1,2,0.2},
}
    fmt.Println(kruskal(edges))
}

这两个示例分别展示了Prim算法和Kruskal算法的Go语言实现,但请注意,它们使用了简化的图结构,实际应用中可能需要更复杂的数据结构和错误处理。

chatgpt:

在这种情况下,因为所有的边权重都均匀分布在[0,1)内,Prim算法和Kruskal算法在理论上应该具有相似的运行时间复杂度。两种算法的最坏情况时间复杂度均为O(E log V)。

从实践的角度来看,在具体的应用和场景中,Prim算法和Kruskal算法的运行时间可能因为具体的实现细节或数据结构的选择而略有差异,但通常来说在这种分布情况下,它们应该有相似的性能表现。

以下是使用Go语言实现Prim算法的代码示例:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
package main

import(
"container/heap"
"fmt"
)

typeEdgestruct{
    to     int
    weight float64
}

typeNodestruct{
    index int
    cost  float64
}

typePriorityQueue[]*Node

func (pq PriorityQueue)Len()int{returnlen(pq)}
func (pq PriorityQueue)Less(i, j int)bool{
return pq[i].cost < pq[j].cost
}
func (pq PriorityQueue)Swap(i, j int){
    pq[i], pq[j]= pq[j], pq[i]
}
func (pq *PriorityQueue)Push(x interface{}){
    item := x.(*Node)
*pq =append(*pq, item)
}
func (pq *PriorityQueue)Pop()interface{}{
    old :=*pq
    n :=len(old)
    item := old[n-1]
*pq = old[0: n-1]
return item
}

func Prim(graph map[int][]Edge){
    N :=len(graph)
    visited :=make([]bool, N)
    pq :=make(PriorityQueue,0)
    heap.Init(&pq)
    heap.Push(&pq,&Node{0,0})

    totalCost :=0.0
for pq.Len()>0{
        node := heap.Pop(&pq).(*Node)
        u := node.index
if visited[u]{
continue
}
        visited[u]=true
        totalCost += node.cost

for _, edge :=range graph[u]{
            v := edge.to
if!visited[v]{
                heap.Push(&pq,&Node{v, edge.weight})
}
}
}

    fmt.Printf("Total cost of minimum spanning tree: %f\n", totalCost)
}

func main(){
    graph :=make(map[int][]Edge)
    graph[0]=[]Edge{{1,0.5},{2,0.6}}
    graph[1]=[]Edge{{0,0.5},{2,0.3}}
    graph[2]=[]Edge{{0,0.6},{1,0.3}}

Prim(graph)
}

你可以根据需要调整边的权重,以及图的结构,来测试Prim算法的实现。

kimi:

在比较Prim算法和Kruskal算法的效率时,需要考虑图的稠密程度。Prim算法适合于稠密图,因为它的时间复杂度为O(n^2),其中n是顶点的数量。Prim算法从任意一个顶点开始,每次添加与当前生成树相连的最小权重边,直到所有顶点都被包含在生成树中。这种方法在顶点数量远大于边的数量时效率较低。

Kruskal算法的时间复杂度为O(m log m),其中m是边的数量。它首先将所有边按权重排序,然后从最小的边开始,选择那些不会形成环的边加入到生成树中。Kruskal算法在处理稀疏图时效率更高,因为它不需要考虑每个顶点的所有邻接边,而是直接操作边的集合。

在Go语言中实现Prim算法和Kruskal算法都是可行的。Prim算法的Go实现通常涉及使用优先队列来选择最小权重边,而Kruskal算法的实现则需要使用并查集来检测环的存在。

综上所述,如果图是稠密的,Prim算法可能会更快;如果图是稀疏的,Kruskal算法可能会更快。在实际应用中,还需要考虑编程语言和具体实现的效率。由于搜索结果中没有提供具体的执行时间对比,无法给出一个确定的答案。但是,根据算法的理论时间复杂度,可以做出上述的一般性判断。

混元:

在图的边权重均匀分布在半开区间[0,1)内的情况下,Kruskal算法通常会比Prim算法运行得更快。这是因为Kruskal算法的时间复杂度主要取决于排序边的时间复杂度,而Prim算法的时间复杂度则取决于数据结构的选择(如优先队列)以及图的具体结构。

Kruskal算法的时间复杂度为O(E log E),其中E是边的数量。这是因为Kruskal算法首先需要对所有边进行排序,然后使用并查集来检测环。排序的时间复杂度是O(E log E),而并查集操作的平均时间复杂度接近O(1)。

Prim算法的时间复杂度取决于所使用的数据结构。如果使用二叉堆作为优先队列,时间复杂度为O(E log V),其中V是顶点的数量。如果使用斐波那契堆,时间复杂度可以降低到O(E + V log V)。

在边权重均匀分布的情况下,Kruskal算法的排序优势更加明显,因为边的权重差异不大,排序可以更快地完成。

下面是用Go语言实现的Kruskal算法示例:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
package main

import(
"fmt"
"sort"
)

typeEdgestruct{
Src,Dst,Weightfloat64
}

typeGraphstruct{
Edges[]Edge
    V     int
}

typeSubsetstruct{
Parent,Rankint
}

func NewSubset(v int)Subset{
returnSubset{Parent: v,Rank:0}
}

func Find(subsets []Subset, i int)int{
if subsets[i].Parent!= i {
        subsets[i].Parent=Find(subsets, subsets[i].Parent)
}
return subsets[i].Parent
}

func Union(subsets []Subset, x, y int){
    rootX :=Find(subsets, x)
    rootY :=Find(subsets, y)

if subsets[rootX].Rank< subsets[rootY].Rank{
        subsets[rootX].Parent= rootY
}elseif subsets[rootX].Rank> subsets[rootY].Rank{
        subsets[rootY].Parent= rootState
}else{
        subsets[rootY].Parent= rootX
        subsets[rootX].Rank++
}
}

func KruskalMST(g Graph)[]Edge{
    result :=make([]Edge,0)
    subsets :=make([]Subset, g.V)

for i :=0; i < g.V; i++{
        subsets[i]=NewSubset(i)
}

    sort.Slice(g.Edges,func(i, j int)bool{
return g.Edges[i].Weight< g.Edges[j].State
})

for _, edge :=range g.Edges{
        x :=Find(subsets,int(edge.Src))
        y :=Find(subsets,int(edge.Dst))

if x != y {
            result =append(result, edge)
Union(subsets, x, y)
}
}

return result
}

func main(){
    g :=Graph{
Edges:[]Edge{
{0,1,0.5},
{1,2,0.3},
{0,2,0.8},
{1,3,0.2},
{2,3,0.4},
},
        V:4,
}

    mst :=KruskalMST(g)
for _, edge :=range mst {
        fmt.Printf("Edge from %v to %v with weight %v\n", edge.Src, edge.Dst, edge.Weight)
}
}

请注意,这个代码示例假设顶点的索引是从0开始的整数。在实际应用中,你可能需要根据你的图的具体情况来调整代码。此外,这个实现没有处理图中可能存在的自环和重边的情况。在实际应用中,你可能需要添加额外的逻辑来处理这些情况。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-09-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 福大大架构师每日一题 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Linux: 深入解析GRUB2引导加载器的核心原理
GRUB2(GRand Unified Bootloader 2)是现代计算机系统中广泛使用的引导加载器。它继承了GRUB的灵活性和强大功能,为用户提供了一个高度可配置和扩展的平台,用于引导多种操作系统。本文将深入探讨GRUB2的工作原理、配置方法以及常见应用场景,帮助读者更好地理解和使用GRUB2。
运维开发王义杰
2024/06/12
1.3K0
Linux: 深入解析GRUB2引导加载器的核心原理
《探秘计算机启动幕后英雄:BIOS/UEFI与GRUB/bootloader》
在我们日常使用计算机的过程中,按下电源键到操作系统界面出现,这看似瞬间的过程,背后却隐藏着一系列复杂且精妙的操作。其中,BIOS/UEFI与GRUB/bootloader扮演着举足轻重的角色,它们就像计算机启动流程中的幕后英雄,默默协作,确保系统顺利启动。今天,就让我们深入探寻它们的奥秘,揭开计算机启动的神秘面纱。
程序员阿伟
2025/04/26
1210
《探秘计算机启动幕后英雄:BIOS/UEFI与GRUB/bootloader》
CentOS7全自动安装光盘制作详解
系统安装的时候,按照ks.cfg文件的内容进行安装,我们把ks.cfg文件放到isolinux目录下:
力哥聊运维与云计算
2019/06/28
7.5K2
Linux系统自定义制作ISO安装镜像
在CentOS6系列版本系统在安装完成后会自动生成一个install.log文件,然后在CentOS7系列版本中就变化为anaconda-ks.cfg文件,它可以作为类似于Windows自动化安装的应答文件,只不过此处是用于Linux系统自动化安装的应答文件即无人值守自动化安装配置文件;
全栈工程师修炼指南
2022/09/29
11.7K0
【深度解析】Linux系统启动流程
Linux系统启动流程大概总结下来是这么一个过程: POST-->BootLoader(MBR)-->Kernel(硬件探测、加载驱动、挂载根文件系统、/sbin/init)-->init(/etc/inittab:设定默认级别、系统初始化脚本、启动及关闭对应级别的服务、启动终端) 详细分析上面的流程 第1步: 1.POST 打开电源按钮,CPU会把位于CMOS中的BIOS程序加载到内存里面执行,BIOS会探测并识别主板上的所有硬件,然后按照BIOS程序里面设定的启动顺序(1.光驱 2.硬盘 3.软驱 等)
小小科
2018/05/03
2.4K0
系统启动流程详解:从BIOS/UEFI到GRUB/Bootloader
这里推荐一篇实用的文章:《揭秘!Vue3.5响应式重构如何让内存占用减少56%》,作者:【前端欧阳】。
Echo_Wish
2024/11/19
2770
系统启动流程详解:从BIOS/UEFI到GRUB/Bootloader
写一个操作系统_03 引导内核
  接上一篇BIOS启动,BIOS完成了基础的硬件检测和硬件的中断向量表的初始化,然后BIOS找到MBR并且把MBR加载在内存中,跳转到该位置。加载的位置在内存中的0x7C00,至于为什么是这个位置,主要是因为历史的原因吧,最初的内存只有32K,历史选择了0x7C00(31k)。
changan
2020/11/04
1.1K0
GRUB多操作系统启动程序介绍与设置使用
描述:GRUB英文全称GRand Unified Bootloader俗称引导程序是硬盘中的软件,它可以启动用户在计算机中的多个操作系统所以也叫多重启动管理器。 目前主流版本是 GRUB2,在windows中也有类似的引导程序ntloader虽然它也可以引导Linux操作系统但是比较麻烦;
全栈工程师修炼指南
2022/09/29
8.6K0
GRUB多操作系统启动程序介绍与设置使用
Linux系统自定义制作ISO安装镜像
在CentOS6系列版本系统在安装完成后会自动生成一个install.log文件,然后在CentOS7系列版本中就变化为anaconda-ks.cfg文件,它可以作为类似于Windows自动化安装的应答文件,只不过此处是用于Linux系统自动化安装的应答文件即无人值守自动化安装配置文件;
全栈工程师修炼指南
2020/10/26
16.6K0
Linux启动流程与模块管理
系统的启动其实是一项非常复杂的过程,因为内核得要检测硬件并加载适当的驱动程序,接下来则必须要调用程序来准备好系统运行的环境,以让用户能够顺利的操作整台主机系统,如果你能够理解系统启动的原理,那么将有助于你在系统出问题时能够很快速的修复系统,而且还能够顺利的配置多重操作系统的多重启动问题,为了多重启动的问题,你就不能不学 grub 这个 Linux 下优秀的启动管理程序(boot loader),而在系统运行期间,你也得要学会管理内核模块,下面进入正题开始学习吧.
王 瑞
2022/12/28
1.4K0
从 1 到 0 构建博客项目(6) -- 操作系统篇(3)PXE 批量安装系统(EFI+BIOS)
官网地址:https://access.redhat.com/documentation/zh-cn/red_hat_enterprise_linux/7/html/installation_guide/chap-installation-server-setup
大大刺猬
2020/12/08
2K0
从 1 到 0 构建博客项目(6) -- 操作系统篇(3)PXE 批量安装系统(EFI+BIOS)
Linux启动流程 梳理| 思维导图 | 流程图 | 值得收藏
嵌入式与Linux那些事
2024/06/11
3850
Linux启动流程 梳理| 思维导图 | 流程图  | 值得收藏
操作系统的启动
操作系统的启动是个很令人好奇的话题,从按下计算机电源的那一刻,计算机从裸机开始呈现一个丰富的系统界面,这个从只有硬件逻辑到软件逻辑的过程是如何完成的?这里我们将从硬盘分区,三方协议,grub引导启动程序进行讲述,首先介绍硬盘MBR分区形式,然后介绍CPU,BIOS,系统的三方协议,讲述从CPU的硬件逻辑最终运行内核的软件逻辑的过程,最后介绍一下引导启动程序的发展,在grub这些引导启动程序中如何继续遵守三方协议。
hoikin-yiu
2020/08/25
1.4K0
操作系统的启动
Linux开机流程(中)
这小节将介绍各种BR(boot record)和各种boot loader,但只是简单介绍其基本作用。
陈不成i
2021/05/25
3.9K0
从无盘启动看 Linux 启动原理
作者:bobyzhang,腾讯 IEG 运营开发工程师 0. 故事的开始 0.1 为什么和做什么 最近家里买了对音响,我需要一个数字播放器。一凡研究后我看上了 volumio(https://volumio.org/) 这是一个基于 Debian 二次开发的 HIFI 播放器系统,可以运行下 x86 和树莓派上。 我打算让 volumio 运行在我 2009 年购买的老爷机笔记本上,也让它发挥一点余温热。正常操作是将 volumio 的系统镜像刷到 U 盘上,连接电脑后使用 U 盘启动系统即可。但是家
腾讯技术工程官方号
2020/11/02
8.9K0
Linux学习笔记之Linux启动引导过程
早期时,启动一台计算机意味着要给计算机喂一条包含引导程序的纸带,或者手工使用前端面板地址/数据/控制开关来加载引导程序。尽管目前的计算机已经装备了很多工具来简化引导过程,但是这一切并没有对整个过程进行必要的简化。
Jetpropelledsnake21
2019/02/15
10.8K1
linux centos系统开机启动流程
任何系统启动的第一步都是加电,也就是按下电源,然后计算机硬件会主动读取BIOS来加载硬件设备信息以及硬件设备的自我检测,之后系统会主动地读取第一个有引导程序的设备,该引导程序可以指定使用哪个内核来启动,并将其加载至内存当中运行,同时内核还要加载其他硬件设备以及对应的驱动程序,来使主机各个组件开始运行,等所有硬件设备加载完成之后,系统就真正启动来了,然后系统会操作一些外部程序开始准备软件的运行环境。之后加载一些系统运行所需要的软件程序。最后一步就是等待用户的登陆。
用户4877748
2020/07/22
3.6K0
【Linux】《how linux work》第五章 Linux内核的启动过程
You now know the physical and logical structure of a Linux system, what the kernel is, and how to work with processes. This chapter will teach you how the kernel starts— or boots. In other words, you’ll learn how the kernel moves into memory up to the point where the first user process starts.
阿东
2024/04/10
5630
【Linux】《how linux work》第五章 Linux内核的启动过程
tinycorelinux安装到硬盘_tty5
i.ttylinux 是一个基于2.6版内核、体积非常之小(5M左右的LiveCD)的Linux。它运行于i486以上平台的PC机上,安装之后,ttylinux的文件系统也只有8M大小,但却提供了一个完整的shell环境,并且可用来访问Internet;
全栈程序员站长
2022/09/21
1.3K0
Linux操作系统从BIOS到bootloader是如何运行的
操作系统一般都会在安装在硬盘上,在 BIOS 的界面上。你会看到一个启动盘的选项。启动盘有什么特点呢?它一般在第一个扇区,占 512 字节,而且以 0xAA55 结束。这是一个约定,当满足这个条件的时候,就说明这是一个启动盘,在 512 字节以内会启动相关的代码。
穿过生命散发芬芳
2025/02/04
2020
推荐阅读
相关推荐
Linux: 深入解析GRUB2引导加载器的核心原理
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档