
【作者主页】Francek Chen 【专栏介绍】
深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。 【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。
注意力汇聚:Nadaraya-Watson核回归使用了高斯核来对查询和键之间的关系建模。式(6)中的高斯核指数部分可以视为注意力评分函数(attention scoring function),简称评分函数(scoring function),然后把这个函数的输出结果输入到softmax函数中进行运算。通过上述步骤,将得到与键对应的值的概率分布(即注意力权重)。最后,注意力汇聚的输出就是基于这些注意力权重的值的加权和。
从宏观来看,上述算法可以用来实现图1中的注意力机制框架。图4说明了如何将注意力汇聚的输出计算成为值的加权和,其中
表示注意力评分函数。由于注意力权重是概率分布,因此加权和其本质上是加权平均值。

图1 计算注意力汇聚的输出为值的加权和
用数学语言描述,假设有一个查询
个“键-值”对
,其中
,
。注意力汇聚函数
就被表示成值的加权和:
其中,查询
和键
的注意力权重(标量)是通过注意力评分函数
将两个向量映射成标量,再经过softmax运算得到的:
正如上图所示,选择不同的注意力评分函数
会导致不同的注意力汇聚操作。本节将介绍两个流行的评分函数,稍后将用他们来实现更复杂的注意力机制。
import math
import torch
from torch import nn
from d2l import torch as d2l 正如上面提到的,softmax操作用于输出一个概率分布作为注意力权重。在某些情况下,并非所有的值都应该被纳入到注意力汇聚中。例如,为了在机器翻译与数据集中高效处理小批量数据集,某些文本序列被填充了没有意义的特殊词元。为了仅将有意义的词元作为值来获取注意力汇聚,可以指定一个有效序列长度(即词元的个数),以便在计算softmax时过滤掉超出指定范围的位置。下面的masked_softmax函数实现了这样的掩蔽softmax操作(masked softmax operation),其中任何超出有效长度的位置都被掩蔽并置为0。
#@save
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行softmax操作"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6)
return nn.functional.softmax(X.reshape(shape), dim=-1)为了演示此函数是如何工作的,考虑由两个
矩阵表示的样本,这两个样本的有效长度分别为
和
。经过掩蔽softmax操作,超出有效长度的值都被掩蔽为0。
masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))
同样,也可以使用二维张量,为矩阵样本中的每一行指定有效长度。
masked_softmax(torch.rand(2, 2, 4), torch.tensor([[1, 3], [2, 4]]))一般来说,当查询和键是不同长度的矢量时,可以使用加性注意力作为评分函数。给定查询
和键
,加性注意力(additive attention)的评分函数为
其中,可学习的参数是
、
和
。式(3)中将查询和键连结起来后输入到一个多层感知机(MLP)中,感知机包含一个隐藏层,其隐藏单元数是一个超参数
。通过使用
作为激活函数,并且禁用偏置项。
下面来实现加性注意力。
#@save
class AdditiveAttention(nn.Module):
"""加性注意力"""
def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
super(AdditiveAttention, self).__init__(**kwargs)
self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
self.w_v = nn.Linear(num_hiddens, 1, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, queries, keys, values, valid_lens):
queries, keys = self.W_q(queries), self.W_k(keys)
# 在维度扩展后,
# queries的形状:(batch_size,查询的个数,1,num_hidden)
# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
# 使用广播方式进行求和
features = queries.unsqueeze(2) + keys.unsqueeze(1)
features = torch.tanh(features)
# self.w_v仅有一个输出,因此从形状中移除最后那个维度。
# scores的形状:(batch_size,查询的个数,“键-值”对的个数)
scores = self.w_v(features).squeeze(-1)
self.attention_weights = masked_softmax(scores, valid_lens)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
return torch.bmm(self.dropout(self.attention_weights), values) 用一个小例子来演示上面的AdditiveAttention类,其中查询、键和值的形状为(批量大小,步数或词元序列长度,特征大小),实际输出为
、
和
。注意力汇聚输出的形状为(批量大小,查询的步数,值的维度)。
queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))
# values的小批量,两个值矩阵是相同的
values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(2, 1, 1)
valid_lens = torch.tensor([2, 6])
attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8, dropout=0.1)
attention.eval()
attention(queries, keys, values, valid_lens)
尽管加性注意力包含了可学习的参数,但由于本例子中每个键都是相同的,所以注意力权重是均匀的,由指定的有效长度决定。
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)), xlabel='Keys', ylabel='Queries')使用点积可以得到计算效率更高的评分函数,但是点积操作要求查询和键具有相同的长度
。假设查询和键的所有元素都是独立的随机变量,并且都满足零均值和单位方差,那么两个向量的点积的均值为
,方差为
。为确保无论向量长度如何,点积的方差在不考虑向量长度的情况下仍然是
,我们再将点积除以
,则缩放点积注意力(scaled dot-product attention)评分函数为:
在实践中,我们通常从小批量的角度来考虑提高效率,例如基于
个查询和
个键-值对计算注意力,其中查询和键的长度为
,值的长度为
。查询
、键
和值
的缩放点积注意力是:
下面的缩放点积注意力的实现使用了暂退法进行模型正则化。
#@save
class DotProductAttention(nn.Module):
"""缩放点积注意力"""
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
# queries的形状:(batch_size,查询的个数,d)
# keys的形状:(batch_size,“键-值”对的个数,d)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
def forward(self, queries, keys, values, valid_lens=None):
d = queries.shape[-1]
# 设置transpose_b=True为了交换keys的最后两个维度
scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
self.attention_weights = masked_softmax(scores, valid_lens)
return torch.bmm(self.dropout(self.attention_weights), values) 为了演示上述的DotProductAttention类,我们使用与先前加性注意力例子中相同的键、值和有效长度。对于点积操作,我们令查询的特征维度与键的特征维度大小相同。
queries = torch.normal(0, 1, (2, 1, 2))
attention = DotProductAttention(dropout=0.5)
attention.eval()
attention(queries, keys, values, valid_lens)
与加性注意力演示相同,由于键包含的是相同的元素,而这些元素无法通过任何查询进行区分,因此获得了均匀的注意力权重。
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)), xlabel='Keys', ylabel='Queries')