首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >聊聊Spring AI的RAG

聊聊Spring AI的RAG

原创
作者头像
code4it
发布于 2025-04-08 03:29:30
发布于 2025-04-08 03:29:30
33800
代码可运行
举报
文章被收录于专栏:码匠的流水账码匠的流水账
运行总次数:0
代码可运行

本文主要研究一下Spring AI的RAG

Sequential RAG Flows

Naive RAG

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
Advisor retrievalAugmentationAdvisor = RetrievalAugmentationAdvisor.builder()
        .documentRetriever(VectorStoreDocumentRetriever.builder()
                .similarityThreshold(0.50)
                .vectorStore(vectorStore)
                .build())
        .queryAugmenter(ContextualQueryAugmenter.builder()
                .allowEmptyContext(true)
                .build())
        .build();

String answer = chatClient.prompt()
        .advisors(retrievalAugmentationAdvisor)
        .user(question)
        .call()
        .content();

allowEmptyContext为true告诉大模型不回答context为empty的问题

Advanced RAG

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
Advisor retrievalAugmentationAdvisor = RetrievalAugmentationAdvisor.builder()
        .queryTransformers(RewriteQueryTransformer.builder()
                .chatClientBuilder(chatClientBuilder.build().mutate())
                .build())
        .documentRetriever(VectorStoreDocumentRetriever.builder()
                .similarityThreshold(0.50)
                .vectorStore(vectorStore)
                .build())
        .build();

String answer = chatClient.prompt()
        .advisors(retrievalAugmentationAdvisor)
        .user(question)
        .call()
        .content();

Advanced RAG可以设置queryTransformers来进行查询转换

Modular RAG

Spring AI受Modular RAG: Transforming RAG Systems into LEGO-like Reconfigurable Frameworks启发实现了Modular RAG,主要分为如下几个阶段:Pre-Retrieval、Retrieval、Post-Retrieval、Generation

Pre-Retrieval

增强和转换用户输入,使其更有效地执行检索任务,解决格式不正确的查询、query 语义不清晰、或不受支持的语言等。

1. QueryAugmenter 查询增强

使用附加的上下文数据信息增强用户query,提供大模型回答问题时的必要上下文信息;

  • ContextualQueryAugmenter使用上下文来增强query
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
QueryAugmenter augmenter = ContextualQueryAugmenter. builder()    
		.allowEmptyContext(false)    
		.build(); 
Query augmentedQuery = augmenter.augment(query, documents);

2. QueryTransformer 查询改写

因为用户的输入通常是片面的,关键信息较少,不便于大模型理解和回答问题。因此需要使用prompt调优手段或者大模型改写用户query; 当使用QueryTransformer时建议设置比较低的temperature(比如0.0)来确保结果的准确性 它有CompressionQueryTransformer、RewriteQueryTransformer、TranslationQueryTransformer三种实现

  • CompressionQueryTransformer使用大模型来压缩会话历史
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
Query query = Query.builder()
        .text("And what is its second largest city?")
        .history(new UserMessage("What is the capital of Denmark?"),
                new AssistantMessage("Copenhagen is the capital of Denmark."))
        .build();

QueryTransformer queryTransformer = CompressionQueryTransformer.builder()
        .chatClientBuilder(chatClientBuilder)
        .build();

Query transformedQuery = queryTransformer.transform(query);
  • RewriteQueryTransformer使用大模型来重写query
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
Query query = new Query("I'm studying machine learning. What is an LLM?");

QueryTransformer queryTransformer = RewriteQueryTransformer.builder()
        .chatClientBuilder(chatClientBuilder)
        .build();

Query transformedQuery = queryTransformer.transform(query);
  • TranslationQueryTransformer使用大模型来翻译query
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
Query query = new Query("Hvad er Danmarks hovedstad?");

QueryTransformer queryTransformer = TranslationQueryTransformer.builder()
        .chatClientBuilder(chatClientBuilder)
        .targetLanguage("english")
        .build();

Query transformedQuery = queryTransformer.transform(query);

3. QueryExpander 查询扩展

将用户 query 扩展为多个语义不同的变体以获得不同视角,有助于检索额外的上下文信息并增加找到相关结果的机会。

  • MultiQueryExpander使用大模型扩展query
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
MultiQueryExpander queryExpander = MultiQueryExpander.builder()
    .chatClientBuilder(chatClientBuilder)
    .numberOfQueries(3)
    .includeOriginal(false) // 默认会包含原始query,设置为false表示不包含
    .build();
List<Query> queries = expander.expand(new Query("How to run a Spring Boot app?"));

Retrieval

负责查询向量存储等数据系统并检索和用户query相关性最高的Document。

1. DocumentRetriever 检索器

根据 QueryExpander 使用不同的数据源进行检索,例如 搜索引擎、向量存储、数据库或知识图等;它主要有VectorStoreDocumentRetriever、WebSearchRetriever两个实现

  • VectorStoreDocumentRetriever
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
DocumentRetriever retriever = VectorStoreDocumentRetriever.builder()
    .vectorStore(vectorStore)
    .similarityThreshold(0.73)
    .topK(5)
    .filterExpression(new FilterExpressionBuilder()
        .eq("genre", "fairytale")
        .build())
    .build();
List<Document> documents = retriever.retrieve(new Query("What is the main character of the story?"));

2. DocumentJoiner

将从多个query和从多个数据源检索到的Document合并为一个Document集合;它有ConcatenationDocumentJoiner实现

  • ConcatenationDocumentJoiner
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
Map<Query, List<List<Document>>> documentsForQuery = ...
DocumentJoiner documentJoiner = new ConcatenationDocumentJoiner();
List<Document> documents = documentJoiner.join(documentsForQuery);

Post-Retrieval

负责处理检索到的 Document 以获得最佳的输出结果,解决模型中的中间丢失和上下文长度限制等。

  1. DocumentRanker:根据Document和用户query的相关性对Document进行排序和排名;
  2. DocumentSelector:用于从检索到的Document列表中删除不相关或冗余文档;
  3. DocumentCompressor:用于压缩每个Document,减少检索到的信息中的噪音和冗余。

Generation

生成用户 Query 对应的大模型输出。

源码

org/springframework/ai/chat/client/advisor/RetrievalAugmentationAdvisor.java

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
	public static final class Builder {

		private List<QueryTransformer> queryTransformers;

		private QueryExpander queryExpander;

		private DocumentRetriever documentRetriever;

		private DocumentJoiner documentJoiner;

		private QueryAugmenter queryAugmenter;

		private TaskExecutor taskExecutor;

		private Scheduler scheduler;

		private Integer order;

		private Builder() {
		}

		//......
	}	

RetrievalAugmentationAdvisor的Builder提供了Pre-Retrieval(queryAugmenterqueryTransformersqueryExpander)、Retrieval(documentRetrieverdocumentJoiner)这几个组件的配置。

示例

ModuleRAGBasicController

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@RestController
@RequestMapping("/module-rag")
public class ModuleRAGBasicController {

	private final ChatClient chatClient;
	private final RetrievalAugmentationAdvisor retrievalAugmentationAdvisor;

	public ModuleRAGBasicController(ChatClient.Builder chatClientBuilder, VectorStore vectorStore) {

		this.chatClient = chatClientBuilder.build();
		this.retrievalAugmentationAdvisor = RetrievalAugmentationAdvisor.builder()
				.documentRetriever(VectorStoreDocumentRetriever.builder()
						.similarityThreshold(0.50)
						.vectorStore(vectorStore)
						.build()
				).build();
	}

	@GetMapping("/rag/basic")
	public String chatWithDocument(@RequestParam("prompt") String prompt) {

		return chatClient.prompt()
				.advisors(retrievalAugmentationAdvisor)
				.user(prompt)
				.call()
				.content();
	}

}

ModuleRAGCompressionController

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@RestController
@RequestMapping("/module-rag")
public class ModuleRAGCompressionController {

	private final ChatClient chatClient;

	private final MessageChatMemoryAdvisor chatMemoryAdvisor;

	private final RetrievalAugmentationAdvisor retrievalAugmentationAdvisor;

	public ModuleRAGCompressionController(
			ChatClient.Builder chatClientBuilder,
			ChatMemory chatMemory,
			VectorStore vectorStore) {

		this.chatClient = chatClientBuilder.build();

		this.chatMemoryAdvisor = MessageChatMemoryAdvisor.builder(chatMemory)
				.build();

		var documentRetriever = VectorStoreDocumentRetriever.builder()
				.vectorStore(vectorStore)
				.similarityThreshold(0.50)
				.build();

		var queryTransformer = CompressionQueryTransformer.builder()
				.chatClientBuilder(chatClientBuilder.build().mutate())
				.build();

		this.retrievalAugmentationAdvisor = RetrievalAugmentationAdvisor.builder()
				.documentRetriever(documentRetriever)
				.queryTransformers(queryTransformer)
				.build();
	}

	@PostMapping("/rag/compression/{chatId}")
	public String rag(
			@RequestBody String prompt,
			@PathVariable("chatId") String conversationId
	) {

		return chatClient.prompt()
				.advisors(chatMemoryAdvisor, retrievalAugmentationAdvisor)
				.advisors(advisors -> advisors.param(
						AbstractChatMemoryAdvisor.CHAT_MEMORY_CONVERSATION_ID_KEY, conversationId))
				.user(prompt)
				.call()
				.content();
	}

}

ModuleRAGMemoryController

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@RestController
@RequestMapping("/module-rag")
public class ModuleRAGMemoryController {

	private final ChatClient chatClient;

	private final MessageChatMemoryAdvisor chatMemoryAdvisor;

	private final RetrievalAugmentationAdvisor retrievalAugmentationAdvisor;

	public ModuleRAGMemoryController(
			ChatClient.Builder chatClientBuilder,
			ChatMemory chatMemory,
			VectorStore vectorStore
	) {

		this.chatClient = chatClientBuilder.build();
		this.chatMemoryAdvisor = MessageChatMemoryAdvisor.builder(chatMemory)
				.build();

		this.retrievalAugmentationAdvisor = RetrievalAugmentationAdvisor.builder()
				.documentRetriever(VectorStoreDocumentRetriever.builder()
						.similarityThreshold(0.50)
						.vectorStore(vectorStore)
						.build())
				.build();
	}

	@PostMapping("/rag/memory/{chatId}")
	public String chatWithDocument(
			@RequestBody String prompt,
			@PathVariable("chatId") String conversationId
	) {

		return chatClient.prompt()
				.advisors(chatMemoryAdvisor, retrievalAugmentationAdvisor)
				.advisors(advisors -> advisors.param(
						AbstractChatMemoryAdvisor.CHAT_MEMORY_CONVERSATION_ID_KEY, conversationId))
				.user(prompt)
				.call()
				.content();
	}

}

ModuleRAGRewriteController

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@RestController
@RequestMapping("/module-rag")
public class ModuleRAGRewriteController {

	private final ChatClient chatClient;

	private final RetrievalAugmentationAdvisor retrievalAugmentationAdvisor;

	public ModuleRAGRewriteController(
			ChatClient.Builder chatClientBuilder,
			VectorStore vectorStore
	) {

		this.chatClient = chatClientBuilder.build();

		var documentRetriever = VectorStoreDocumentRetriever.builder()
				.vectorStore(vectorStore)
				.similarityThreshold(0.50)
				.build();

		var queryTransformer = RewriteQueryTransformer.builder()
				.chatClientBuilder(chatClientBuilder.build().mutate())
				.targetSearchSystem("vector store")
				.build();

		this.retrievalAugmentationAdvisor = RetrievalAugmentationAdvisor.builder()
				.documentRetriever(documentRetriever)
				.queryTransformers(queryTransformer)
				.build();
	}

	@PostMapping("/rag/rewrite")
	public String rag(@RequestBody String prompt) {

		return chatClient.prompt()
				.advisors(retrievalAugmentationAdvisor)
				.user(prompt)
				.call()
				.content();
	}
}

ModuleRAGTranslationController

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@RestController
@RequestMapping("/module-rag")
public class ModuleRAGTranslationController {

	private final ChatClient chatClient;

	private final RetrievalAugmentationAdvisor retrievalAugmentationAdvisor;

	public ModuleRAGTranslationController(ChatClient.Builder chatClientBuilder, VectorStore vectorStore) {
		this.chatClient = chatClientBuilder.build();

		var documentRetriever = VectorStoreDocumentRetriever.builder()
				.vectorStore(vectorStore)
				.similarityThreshold(0.50)
				.build();

		var queryTransformer = TranslationQueryTransformer.builder()
				.chatClientBuilder(chatClientBuilder.build().mutate())
				.targetLanguage("english")
				.build();

		this.retrievalAugmentationAdvisor = RetrievalAugmentationAdvisor.builder()
				.documentRetriever(documentRetriever)
				.queryTransformers(queryTransformer)
				.build();
	}

	@PostMapping("/rag/translation")
	public String rag(@RequestBody String prompt) {

		return chatClient.prompt()
				.advisors(retrievalAugmentationAdvisor)
				.user(prompt)
				.call()
				.content();
	}

}

小结

Spring AI通过RetrievalAugmentationAdvisor提供了开箱即用的RAG flows,主要有两大类,一是Sequential RAG Flows(Naive RAGAdvanced RAG),另外Spring AI受Modular RAG: Transforming RAG Systems into LEGO-like Reconfigurable Frameworks启发实现了Modular RAG,主要分为如下几个阶段:Pre-Retrieval、Retrieval、Post-Retrieval、Generation这几个阶段。RetrievalAugmentationAdvisor的Builder提供了Pre-Retrieval(queryAugmenterqueryTransformersqueryExpander)、Retrieval(documentRetrieverdocumentJoiner)这几个组件的配置。

doc

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Sequential RAG Flows
    • Naive RAG
    • Advanced RAG
  • Modular RAG
    • Pre-Retrieval
      • 1. QueryAugmenter 查询增强
      • 2. QueryTransformer 查询改写
      • 3. QueryExpander 查询扩展
    • Retrieval
      • 1. DocumentRetriever 检索器
      • 2. DocumentJoiner
    • Post-Retrieval
    • Generation
  • 源码
  • 示例
    • ModuleRAGBasicController
    • ModuleRAGCompressionController
    • ModuleRAGMemoryController
    • ModuleRAGRewriteController
    • ModuleRAGTranslationController
  • 小结
  • doc
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档