继续写《从0开发大模型》系列文章,本文主要介绍预训练过程。 预训练是目的是让模型学习知识,需要将预处理的数据(《机器学习|从0开发大模型之数据预处理》)中生成的 pretrain_data.bin
文件的上下文全部学习到,那预训练怎么做呢?
初始化参数模板:
from transformers import PretrainedConfig
class MyPretrainConfig(PretrainedConfig):
model_type = "myllm"
def __init__(
self,
dim: int = 512,
n_layers: int = 8,
n_heads: int = 16,
n_kv_heads: int = 8,
vocab_size: int = 6400,
hidden_dim: int = None,
multiple_of: int = 64,
norm_eps: float = 1e-5,
max_seq_len: int = 512,
dropout: float = 0.0,
flash_attn: bool = True,
use_moe: bool = False,
num_experts_per_tok=2,
n_routed_experts=4,
n_shared_experts: bool = True,
scoring_func='softmax',
aux_loss_alpha=0.01,
seq_aux=True,
norm_topk_prob=True,
**kwargs,
):
self.dim = dim
self.n_layers = n_layers
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads
self.vocab_size = vocab_size
self.hidden_dim = hidden_dim
self.multiple_of = multiple_of
self.norm_eps = norm_eps
self.max_seq_len = max_seq_len
self.dropout = dropout
self.flash_attn = flash_attn
self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量
self.n_routed_experts = n_routed_experts # 总的专家数量
self.n_shared_experts = n_shared_experts # 共享专家
self.scoring_func = scoring_func # 评分函数,默认为'softmax'
self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数
self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失
self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率
super().__init__(**kwargs)
这里依赖 transformers
库的 PretrainedConfig
,其中 MyPretrainConfig
参数如下:
dim: int = 512
:模型的维度,默认为 512n_layers: int = 8
:模型的层数,默认为 8n_heads: int = 16
:注意力头的数量,默认为 16n_kv_heads: int = 8
:键值对的头数,默认为 8vocab_size: int = 6400
:词汇表的大小,默认为 6400hidden_dim: int = None
:隐藏层的维度,默认为 None
,可以根据需要设置multiple_of: int = 64
:模型维度必须是这个值的倍数,默认为 64norm_eps: float = 1e-5
:归一化的 epsilon 值,默认为 1e-5max_seq_len: int = 512
:最大序列长度,默认为 512dropout: float = 0.0
:dropout 概率,默认为 0.0flash_attn: bool = True
:是否使用快速注意力机制,默认为 True
num_experts_per_tok=2
:每个 token 选择的专家数量,默认为 2n_routed_experts=4
:总的专家数量,默认为 4n_shared_experts: bool = True
:是否使用共享专家,默认为 True
scoring_func='softmax'
:评分函数,默认为 'softmax'
aux_loss_alpha=0.01
:辅助损失的 alpha 参数,默认为 0.01seq_aux=True
:是否在序列级别上计算辅助损失,默认为 True
norm_topk_prob=True
:是否标准化 top-k 概率,默认为 True
**kwargs
:接收其他关键字参数,传递给父类的构造函数PretrainedConfig
提供预训练的参数模板,由于每个模型都是不一样的,所以一般做成配置文件携带模型一起发布。
加载上一篇文章已经处理好的预处理数据,代码如下:
data_path_list = [f'./pretrain_data.bin']
train_ds = PretrainDataset(data_path_list, max_length=max_seq_len, memmap=True)
train_sampler = None
num_workers = 16 # 可以根据系统的 CPU 核心数来调整
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=num_workers,
sampler=train_sampler
)
其中 PretrainDataset
是加载代码,主要目的是将数据转换到内存中,方便 DataLoader
获取:
class PretrainDataset(Dataset):
def __init__(self, data_path_lst, max_length=512, memmap=False):
super().__init__()
if memmap:
with open(data_path_lst[0], 'r') as f:
nbytes = f.seek(0, 2)
flen = f.tell() // np.dtype('uint16').itemsize
self.data = np.memmap(data_path_lst[0], dtype=np.dtype('uint16'), shape=(flen // max_length, max_length))
else:
data_lst = []
for data_path in data_path_lst:
with open(data_path, 'rb') as f:
data = np.fromfile(f, dtype=np.uint16)
data_lst.append(data)
data = np.concatenate(data_lst)
data = data[:max_length * int(len(data) / max_length)]
self.data = data.reshape(-1, max_length)
print("memmap:{} train data.shape:{}".format(memmap, self.data.shape))
print("downloading finished.....")
def __len__(self):
return self.data.shape[0]
def __getitem__(self, index: int):
sample = self.data[index]
X = np.array(sample[:-1]).astype(np.int64)
Y = np.array(sample[1:]).astype(np.int64)
return torch.from_numpy(X), torch.from_numpy(Y)
其中 Dataset
是 from torch.utils.data import Dataset
通用代码。
初始化模型,借鉴 llama2.c
的代码,路径:https://github.com/karpathy/llama2.c/blob/master/model.py,使用 Transformer
的 decoder
阶段,即 Decoder-Only
,主要是如下逻辑:
具体代码如下:
class Transformer(PreTrainedModel):
last_loss: Optional[torch.Tensor]
def __init__(self, params: MyPretrainConfig):
super().__init__(params)
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
# share the unembedding parameters with the embedding parameters
self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying
# some useful precompute for the RoPE relative positional embeddings
freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers))
# Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
self.last_loss = None
self.OUT = CausalLMOutputWithPast()
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None) -> torch.Tensor:
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
h = self.dropout(h)
freqs_cos = self.freqs_cos[:seqlen]
freqs_sin = self.freqs_sin[:seqlen]
for layer in self.layers:
h = layer(h, freqs_cos, freqs_sin)
h = self.norm(h)
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.output(h)
self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
# inference-time mini-optimization: only forward the output on the very last position
logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim
self.last_loss = None
self.OUT.__setitem__('logits', logits)
self.OUT.__setitem__('last_loss', self.last_loss)
return self.OUT
...
然后通过上述模型初始化,并打印模型:
def init_model():
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
model = Transformer(lm_config).to(device)
print(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')
return model
model = init_model()
print(model)
获取输出结果如下:
Transformer(
(tok_embeddings): Embedding(6400, 512)
(dropout): Dropout(p=0.0, inplace=False)
(layers): ModuleList(
(0-7): 8 x TransformerBlock(
(attention): Attention(
(wq): Linear(in_features=512, out_features=512, bias=False)
(wk): Linear(in_features=512, out_features=256, bias=False)
(wv): Linear(in_features=512, out_features=256, bias=False)
(wo): Linear(in_features=512, out_features=512, bias=False)
(attn_dropout): Dropout(p=0.0, inplace=False)
(resid_dropout): Dropout(p=0.0, inplace=False)
)
(feed_forward): FeedForward(
(w1): Linear(in_features=512, out_features=1408, bias=False)
(w2): Linear(in_features=1408, out_features=512, bias=False)
(w3): Linear(in_features=512, out_features=1408, bias=False)
(dropout): Dropout(p=0.0, inplace=False)
)
(attention_norm): RMSNorm()
(ffn_norm): RMSNorm()
)
)
(norm): RMSNorm()
(output): Linear(in_features=512, out_features=6400, bias=False)
)
模型初始化这里就不详细说了,这个系列出一篇文章具体分析 llama2.c
源码,讲述是如何实现模型创建的。
执行模型初始化后则选择优化器,这里代码如下:
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
GradScaler
在 PyTorch 中的作用是用于自动混合精度(Automatic Mixed Precision, AMP)训练时的梯度缩放,具体来说,它的主要功能包括:
GradScaler
会自动调整梯度的缩放因子,以确保梯度在更新时不会下溢;GradScaler
通过动态调整缩放因子,帮助在保持数值稳定性的同时,充分利用混合精度的优势;GradScaler
可以简化混合精度训练的实现,开发者不需要手动管理缩放因子和反缩放操作;在训练过程中,通常会使用 scaler.scale(loss).backward()
来计算缩放后的损失的梯度,然后使用 scaler.step(optimizer)
来更新模型参数,最后使用 scaler.update()
来更新缩放因子,这样可以确保训练过程的稳定性和效率。
optimizer
在深度学习中是一个非常重要的组件,其主要作用是更新模型的参数,以最小化损失函数,具体来说,optimizer
的作用包括:
在下面的迭代训练中,主要作用是根据损失值调整优化器参数:
# 反向传播
scaler.scale(loss).backward()
# 梯度剪裁和更新参数
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scaler.update()
# 清零梯度
optimizer.zero_grad(set_to_none=True)
上述预处理数据加载完,模型执行了初始化,然后优化器也初始化后,就可以进行迭代训练了,不过迭代训练最重要的是设置学习率,根据loss动态调整参数,代码如下:
for epoch in range(epochs):
start_time = time.time()
for step, (X, Y) in enumerate(train_loader):
X = X.to(device)
Y = Y.to(device)
# 设置学习率
lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# 前向传播和损失计算
with ctx:
out = model(X, Y)
loss = out.last_loss
# 反向传播
scaler.scale(loss).backward()
# 梯度剪裁和更新参数
if (step + 1) % accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scaler.update()
# 清零梯度
optimizer.zero_grad(set_to_none=True)
if step % 100 == 0:
spend_time = time.time() - start_time
print(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
epoch,
epochs,
step,
iter_per_epoch,
loss.item(),
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
model.eval()
ckp = f'{save_dir}/pretrain_{lm_config.dim}.pth'
state_dict = model.state_dict()
torch.save(state_dict, ckp)
model.train()
out = model(X, Y)
前向传播,计算输出scaler.scale(loss).backward()
反向传播,计算梯度,执行 accumulation_steps
后更新梯度model.eval()
和 model.train()
分别是模型评估和训练,并保存当前模型到指定的文件夹本人在T4的GPU上,跑了30+小时完成迭代训练,如果使用CPU时间会X4,我在附录中放了完整的代码,有兴趣的可以跑一下。
完成代码:
import os
import time
import math
import warnings
import inspect
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from contextlib import nullcontext
from model.model import Transformer
from torch.utils.data import Dataset
from transformers import PretrainedConfig
from typing import Any, Optional, Tuple
import torch.nn.functional as F
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings('ignore')
basepath = "../datasets"
class MyPretrainConfig(PretrainedConfig):
model_type = "myllm"
def __init__(
self,
dim: int = 512,
n_layers: int = 8,
n_heads: int = 16,
n_kv_heads: int = 8,
vocab_size: int = 6400,
hidden_dim: int = None,
multiple_of: int = 64,
norm_eps: float = 1e-5,
max_seq_len: int = 512,
dropout: float = 0.0,
flash_attn: bool = True,
num_experts_per_tok=2,
n_routed_experts=4,
n_shared_experts: bool = True,
scoring_func='softmax',
aux_loss_alpha=0.01,
seq_aux=True,
norm_topk_prob=True,
**kwargs,
):
self.dim = dim
self.n_layers = n_layers
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads
self.vocab_size = vocab_size
self.hidden_dim = hidden_dim
self.multiple_of = multiple_of
self.norm_eps = norm_eps
self.max_seq_len = max_seq_len
self.dropout = dropout
self.flash_attn = flash_attn
self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量
self.n_routed_experts = n_routed_experts # 总的专家数量
self.n_shared_experts = n_shared_experts # 共享专家
self.scoring_func = scoring_func # 评分函数,默认为'softmax'
self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数
self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失
self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率
super().__init__(**kwargs)
class PretrainDataset(Dataset):
def __init__(self, data_path_lst, max_length=512, memmap=False):
super().__init__()
if memmap:
with open(data_path_lst[0], 'r') as f:
nbytes = f.seek(0, 2)
flen = f.tell() // np.dtype('uint16').itemsize
self.data = np.memmap(data_path_lst[0], dtype=np.dtype('uint16'), shape=(flen // max_length, max_length))
else:
data_lst = []
for data_path in data_path_lst:
with open(data_path, 'rb') as f:
data = np.fromfile(f, dtype=np.uint16)
data_lst.append(data)
data = np.concatenate(data_lst)
data = data[:max_length * int(len(data) / max_length)]
self.data = data.reshape(-1, max_length)
print("memmap:{} train data.shape:{}".format(memmap, self.data.shape))
print("downloading finished.....")
def __len__(self):
return self.data.shape[0]
def __getitem__(self, index: int):
sample = self.data[index]
X = np.array(sample[:-1]).astype(np.int64)
Y = np.array(sample[1:]).astype(np.int64)
return torch.from_numpy(X), torch.from_numpy(Y)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cos = torch.cos(freqs) # real part
freqs_sin = torch.sin(freqs) # imaginary part
return freqs_cos, freqs_sin
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape xq and xk to match the complex representation
xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)
# reshape freqs_cos and freqs_sin for broadcasting
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
# apply rotation using real numbers
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
# flatten last two dimensions
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: MyPretrainConfig):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
assert args.n_heads % self.n_kv_heads == 0
model_parallel_size = 1
self.n_local_heads = args.n_heads // model_parallel_size
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
# use flash attention or a manual implementation?
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
if not self.flash:
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
self.register_buffer("mask", mask)
def forward(
self,
x: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
):
bsz, seqlen, _ = x.shape
# QKV
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
# RoPE relative positional embeddings
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
# grouped multiquery attention: expand out keys and values
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
# make heads into a batch dimension
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
# flash implementation
if self.flash:
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None, dropout_p=self.dropout if self.training else 0.0, is_causal=True)
else:
# manual implementation
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
assert hasattr(self, 'mask')
scores = scores + self.mask[:, :, :seqlen, :seqlen] # (bs, n_local_heads, seqlen, cache_len + seqlen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
# restore time as batch dimension and concat heads
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
# final projection into the residual stream
output = self.wo(output)
output = self.resid_dropout(output)
return output
class FeedForward(nn.Module):
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
super().__init__()
if hidden_dim is None:
hidden_dim = 4 * dim
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: MyPretrainConfig):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(
dim=args.dim,
hidden_dim=args.hidden_dim,
multiple_of=args.multiple_of,
dropout=args.dropout,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(self, x, freqs_cos, freqs_sin):
h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
class Transformer(PreTrainedModel):
last_loss: Optional[torch.Tensor]
def __init__(self, params: MyPretrainConfig):
super().__init__(params)
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
# share the unembedding parameters with the embedding parameters
self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying
# some useful precompute for the RoPE relative positional embeddings
freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers))
# Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
self.last_loss = None
self.OUT = CausalLMOutputWithPast()
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None) -> torch.Tensor:
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
h = self.dropout(h)
freqs_cos = self.freqs_cos[:seqlen]
freqs_sin = self.freqs_sin[:seqlen]
for layer in self.layers:
h = layer(h, freqs_cos, freqs_sin)
h = self.norm(h)
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.output(h)
self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
# inference-time mini-optimization: only forward the output on the very last position
logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim
self.last_loss = None
self.OUT.__setitem__('logits', logits)
self.OUT.__setitem__('last_loss', self.last_loss)
return self.OUT
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
print(f"using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
# first estimate the number of flops we do per iteration.
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
N = sum(p.numel() for p in self.parameters())
cfg = self.params
L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim//cfg.n_heads, cfg.max_seq_len
flops_per_token = 6*N + 12*L*H*Q*T
flops_per_fwdbwd = flops_per_token * T
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
# express our flops throughput as ratio of A100 bfloat16 peak flops
flops_achieved = flops_per_iter * (1.0/dt) # per second
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
mfu = flops_achieved / flops_promised
return mfu
@torch.inference_mode()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
Also note this is a super inefficient version of sampling with no key/value cache.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
# forward the model to get the logits for the index in the sequence
logits = self(idx_cond)
logits = logits[:, -1, :] # crop to just the final time step
if temperature == 0.0:
# "sample" the single most likely index
_, idx_next = torch.topk(logits, k=1, dim=-1)
else:
# pluck the logits at the final step and scale by desired temperature
logits = logits / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx
def get_lr(it, all):
warmup_iters = 0
lr_decay_iters = all
min_lr = learning_rate / 10
if it < warmup_iters:
return learning_rate * it / warmup_iters
if it > lr_decay_iters:
return min_lr
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (learning_rate - min_lr)
def init_model():
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
model = Transformer(lm_config).to(device)
print(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')
return model
if __name__ == "__main__":
# -----------------------------------------------------------------------------
lm_config = MyPretrainConfig()
max_seq_len = lm_config.max_seq_len
out_dir = 'out'
epochs = 20 # 训练轮数
batch_size = 8 # batch_size
learning_rate = 1e-4 # 学习率
device = 'cuda:0' # or cpu
dtype = 'bfloat16'
save_dir = os.path.join(out_dir)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(out_dir, exist_ok=True)
tokens_per_iter = batch_size * max_seq_len
torch.manual_seed(1337)
device_type = device if "cuda" in device else "cpu"
print(f"device_type: {device_type}")
ctx = (
nullcontext()
if device_type == "cpu"
else torch.cuda.amp.autocast()
)
# -----------------------------------------------------------------------------
# -----init dataloader------
data_path_list = [f'{basepath}/pretrain_data.bin']
train_ds = PretrainDataset(data_path_list, max_length=max_seq_len, memmap=True)
train_sampler = None
num_workers = 16 # 可以根据系统的 CPU 核心数来调整
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=num_workers,
sampler=train_sampler
)
# init model
model = init_model()
print(model)
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# training loop
accumulation_steps = 8
iter_per_epoch = len(train_loader)
for epoch in range(epochs):
start_time = time.time()
for step, (X, Y) in enumerate(train_loader):
X = X.to(device)
Y = Y.to(device)
# 设置学习率
lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# 前向传播和损失计算
with ctx:
out = model(X, Y)
loss = out.last_loss
# 反向传播
scaler.scale(loss).backward()
# 梯度剪裁和更新参数
if (step + 1) % accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scaler.update()
# 清零梯度
optimizer.zero_grad(set_to_none=True)
if step % 100 == 0:
spend_time = time.time() - start_time
print(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
epoch,
epochs,
step,
iter_per_epoch,
loss.item(),
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
model.eval()
ckp = f'{save_dir}/pretrain_{lm_config.dim}.pth'
state_dict = model.state_dict()
torch.save(state_dict, ckp)
model.train()
(1)https://github.com/jingyaogong/minimind?tab=readme-ov-file#%E6%95%B0%E6%8D%AE%E9%9B%86%E4%B8%8B%E8%BD%BD%E5%9C%B0%E5%9D%80 (2)https://github.com/karpathy/llama2.c/blob/master/train.py