部署DeepSeek模型,进群交流最in玩法!
立即加群
发布
社区首页 >专栏 >Linguists Should Find Self-Attention Intuitively Familiar

Linguists Should Find Self-Attention Intuitively Familiar

原创
作者头像
立委
发布2025-02-25 02:17:12
发布2025-02-25 02:17:12
5100
代码可运行
举报
文章被收录于专栏:腾讯云TVP腾讯云TVP
运行总次数:0
代码可运行
代码语言:javascript
代码运行次数:0
复制
Written for my linguistics and symbolic NLP peers — a reflection on my journey to leverage computational linguistics in undersranding modern AI LLM.

Breaking Through the Jargon Barrier

For linguists bewildered by large language models (LLMs), the confusion often stems from terminology and implementation details obscuring shared foundational principles. Let’s cut through the noise and focus on self-attention — the beating heart of the Transformer architecture.

As a computational linguist and lifelong NLP practitioner, I’ve spent years dissecting symbolic grammars and, more recently, tracking the rise of LLMs. Here’s my attempt to "translate" the core design of multi-head Query-Key-Value (QKV) mechanisms into a framework linguists already know.

QKV: A Linguistic Reinterpretation

Query as Subcategorization (Subcat) First, I would like to point out, Query mirrors Subcat in symbolic grammar: the slots a head word "digs" for its dependents. Take a transitive verb (vt) as an example: it creates two syntactic "slots"—a noun subject (pre-verbal) and a noun object (post-verbal). Similarly, the predicate eat defines two semantic slots: an animate agent (e.g., animal) and an edible patient (e.g., food). These constraints — syntactic roles and semantic selection restrictions — are bread-and-butter concepts for linguists.

Key as Ontological Features Key represents ontological attributes: nounhood, animacy, action, state, time, descriptive, etc.  Value is the filler—the "carrot" that occupies a slot. When I first read Attention is all you need, the QKV triad felt alien. No one explained that this was just dynamic slot-filling.

Why LLMs "Get" Language

LLMs thrive because their "slots" and "fillers" align perfectly across linguistic hierarchies. Every token carries QKV information because every word can both be a seeker (Query) and a target (Key/Value). When a Query (e.g., eat) finds a compatible Key (e.g., apple), their dot product sparks a high attention weight. The Value (the token’s semantic essence) is then passed forward, blending into the next layer’s representation of the token.

Contextual "Polygamy" Tokens in the context window engage in group marriage, not monogamy. Each token 'flirts' with all others via Query-Key dot products. Relationships vary in intensity (weights), and the resulting "offspring"—the next layer’s tokens—inherit traits from multiple "parents" through weighted summation. Stronger relationships dominate; weaker ones fade. This crazy yet efficient "breeding" compresses linguistic structure into dense vector spaces, a process conceptually equivalent to parsing, understanding, and generation in one unified mechanism.

The Database Analogy (and Why It 'Misled' Us)

QKV borrows terms from database systems (Query for search, Key-Value for retrieval), but early attempts to map this to linguistics fell flat. We thought: "Databases? That’s just dictionary lookups — isn't it already handled by embeddings?!" The breakthrough came when we realized: Self-attention isn’t static retrieval—it’s dynamic, context-aware slot-filling.

For decades, we built bottom-up parsers using Subcat frames. Transformer layers do the same, but with vectors instead of symbolic representaions. See the 2 slides I made 3+ years ago when GPT3 playground was launched when I compared the parallel archtectures and approaches from two schools of AI, grammar school and multi-neural network school.  Symbolic grammars, though, despite their transparency, pale in scalability: - Granularity: LLMs leverage hundred or thousand dimensional vectors; we relied on only hundreds of one-hot features. - Generalization: Transformers parse text, audio, video—any modality. Symbolic grammars, at best, aspire to universal grammar across languages.

A Convergence of Paths

代码语言:javascript
代码运行次数:0
复制
My colleague Lü Zhengdong once mapped the evolution of attention: 
Seq2Seq (Google Brain) → Auto-alignment (Mila) → Transformer (Google) → Pre-trained LMs → LLMs (OpenAI)...

To this, I chuckled: "You pioneers see the trajectory clearly. But for us symbolic refugees, diving into Attention is all you need felt like drinking from a firehose." Without fully understanding the historical context, the concepts overwhelmed us—until one day, it clicked: Subcat-driven parsing and self-attention are two sides of the same coin.

Symbolic methods are obsolete, yes—clunky, rigid, and modality-bound, with the only merit of full transparency of symbolic logic. Yet understanding their parallels to Transformers suddenly made LLMs feel familiar. The difference? Scale and ambition. Linguists seek cross-linguistic universals; AI aims for cross-modal universals.

Postscript: Simplifying the Transformer

The original Transformer paper (Attention is all you need) is not an easy-read at all, bogged down by encoder-decoder specifics for machine translation. Strip away the noise, and the core is simple: 1. Self-attention layers (dynamic slot-filling). 2. Feedforward networks (nonlinear transformations).

GPT’s decoder-only architecture reveals the essence: next-token prediction (NTP) is the key to general intelligence. The so-called "decoder" isn’t just about decoding or generation—it’s also analysis and understanding fused into one stream.

Closing Thoughts

Dr. Bai, Shuo once remarked:

代码语言:javascript
代码运行次数:0
复制
Language processing demands a unified ‘currency’—a mechanism to reconcile syntax, semantics, pragmatics, and world knowledge. Only neural networks (imperfect as they are) managed to have achieved this, probabilistically. Attention is that currency.

He’s right.  Attention isn’t just a tool—it’s the universal metric we’ve sought all along.

【相关】

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Breaking Through the Jargon Barrier
  • QKV: A Linguistic Reinterpretation
  • Why LLMs "Get" Language
  • The Database Analogy (and Why It 'Misled' Us)
  • A Convergence of Paths
  • Postscript: Simplifying the Transformer
  • Closing Thoughts
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档