Ocean Biogeochemistry from Gliders as part of the Gulf of Maine North Atlantic Time Series
这个数据集包含来自海洋潜水器的海洋生物地球化学数据,作为北大西洋时间系列项目中的一部分,涵盖了墨菲湾的部分区域。数据集记录了海洋中不同地点和深度的水体化学成分、生物量和生物多样性等信息,有助于研究海洋生态系统的变化和演化过程。
Publisher | NASA/GSFC/SED/ESD/ESISL/GESDISC |
---|---|
Contact Name | Thomas Hearty |
Contact Email | mailto:Thomas.J.Hearty@nasa.gov |
Bureau Code | 026:00 |
Program Code | 026:001 |
Public Access Level | public |
Geographic Coverage | -69.78 43.35 -66.8 43.9 |
Temporal Applicability | 2008-08-04T14:36:15Z/2021-09-16T12:27:37Z |
Theme | CMS, geospatial |
Language | en-US |
Homepage | GES DISC |
Issued | 2022-08-04T00:00:00.000Z |
Unique Identifier | C2873840825-GES_DISC |
Last Update | 2022-08-04T00:00:00.000Z |
citation | Catherine Mitchell & Sunny Pinkham. 2024-02-27. BGC_glider_GNATS. Version 1. Ocean Biogeochemistry from Gliders as part of the Gulf of Maine North Atlantic Time Series. Greenbelt, MD, USA. Archived by National Aeronautics and Space Administration, U.S. Government, Goddard Earth Sciences Data and Information Services Center (GES DISC). GES DISC. GES DISC. Digital Science Data. |
---|---|
creator | Catherine Mitchell & Sunny Pinkham |
data-presentation-form | Digital Science Data |
graphic-preview-file | https://docserver.gesdisc.eosdis.nasa.gov/public/project/CMS/GNATS-GoM.png |
release-place | Greenbelt, MD, USA |
series-name | BGC_glider_GNATS |
Category | This dataset has not been categorized |
---|---|
Tags | earth science,oceans,ocean optics |
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
import pandas as pd
import leafmap
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
leafmap.nasa_data_login()
results, gdf = leafmap.nasa_data_search(
short_name="BGC_glider_GNATS",
cloud_hosted=True,
bounding_box=(-69.78, 43.35, -66.8, 43.9),
temporal=("2008-08-04", "2021-09-16"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)
gdf.explore()
#leafmap.nasa_data_download(results[:5], out_dir="data")