前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >【pytorch练习】使用pytorch神经网络架构拟合余弦曲线

【pytorch练习】使用pytorch神经网络架构拟合余弦曲线

作者头像
机器学习司猫白
修改2025-02-05 09:14:40
修改2025-02-05 09:14:40
10800
代码可运行
举报
文章被收录于专栏:机器学习实战机器学习实战
运行总次数:0
代码可运行

在本篇博客中,我们将通过一个简单的例子,讲解如何使用 PyTorch 实现一个神经网络模型来拟合余弦函数。本文将详细分析每个步骤,从数据准备到模型的训练与评估,帮助大家更好地理解如何使用 PyTorch 进行模型构建和训练。

一、背景

在机器学习中,拟合曲线是一个常见的任务,尤其是在函数预测和回归问题中。今天,我们使用一个简单的神经网络模型来拟合余弦曲线,具体步骤包括:

准备训练数据; 构建神经网络模型; 训练模型; 可视化预测结果与真实数据。 本例通过 PyTorch 实现了整个流程,我们将逐步展开。

二、代码解析

  1. 导入必要的库
代码语言:javascript
代码运行次数:0
复制
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False

首先,我们导入了PyTorch相关的库 torch、torch.nn,以及用于数据加载的 DataLoader 和 TensorDataset。为了可视化结果,我们还引入了 matplotlib。

此外,为了避免某些系统环境下的警告信息,我们设置了 os.environ[“KMP_DUPLICATE_LIB_OK”] = “TRUE”,这有助于避免在多线程计算中遇到一些潜在的错误。

  1. 准备拟合数据
代码语言:javascript
代码运行次数:0
复制
# 准备拟合数据
x = np.linspace(-2 * np.pi, 2 * np.pi, 400)  # 生成从 -2π 到 2π 的 400 个点
y = np.cos(x)  # 计算对应的余弦值

# 绘制生成的数据的散点图
plt.figure(figsize=(7, 5), dpi=160)
plt.scatter(x, y, color='red', label='生成数据')
plt.title('x 和 cos(x) 数据散点图', fontsize=15)
plt.xlabel('x', fontsize=12)
plt.ylabel('cos(x)', fontsize=12)
plt.legend(fontsize=12)
plt.grid(True)
plt.show()

使用 numpy.linspace 生成一个包含 400 个点的 x 轴数据,范围从 -2π 到 2π,然后计算对应的 y 值,这里 y = cos(x)。

  1. 接下来,将数据整理成 PyTorch 能够接受的格式
代码语言:javascript
代码运行次数:0
复制
# 将数据做成数据集的模样
X = np.expand_dims(x, axis=1)  # 使 X 变为二维数组
Y = y.reshape(400, -1)  # Y 为一列的数组
dataset = TensorDataset(torch.tensor(X, dtype=torch.float), torch.tensor(Y, dtype=torch.float))
dataloader = DataLoader(dataset, batch_size=10, shuffle=True)

通过 TensorDataset 将 x 和 y 数据捆绑成一个数据集,并使用 DataLoader 来批量加载数据,设置 batch_size=10,并启用数据打乱(shuffle=True)以增加模型训练的随机性。

  1. 构建神经网络 接下来,我们将构建一个简单的神经网络来拟合这些数据。在这个例子中,我们使用了一个全连接的神经网络,并采用了 ReLU 激活函数。网络的结构如下:

输入层:1 个神经元(因为我们的输入是一个 1D 数值)。 隐藏层 1:10 个神经元,使用 ReLU 激活函数。 隐藏层 2:100 个神经元,使用 ReLU 激活函数。 隐藏层 3:10 个神经元,使用 ReLU 激活函数。 输出层:1 个神经元,输出拟合的结果。

代码语言:javascript
代码运行次数:0
复制
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(in_features=1, out_features=10), nn.ReLU(),
            nn.Linear(10, 100), nn.ReLU(),
            nn.Linear(100, 10), nn.ReLU(),
            nn.Linear(10, 1)
        )

    def forward(self, input: torch.FloatTensor):
        return self.net(input)

# 创建模型实例
net = Net()
net 
代码语言:javascript
代码运行次数:0
复制
Net(
  (net): Sequential(
    (0): Linear(in_features=1, out_features=10, bias=True)
    (1): ReLU()
    (2): Linear(in_features=10, out_features=100, bias=True)
    (3): ReLU()
    (4): Linear(in_features=100, out_features=10, bias=True)
    (5): ReLU()
    (6): Linear(in_features=10, out_features=1, bias=True)
  )
)

这段代码定义了一个简单的神经网络类 Net,它继承自 nn.Module。通过 nn.Sequential 来堆叠多个层,使得网络的结构更加简洁和易于理解。每一层都紧跟着一个 ReLU 激活函数,用于引入非线性特征。

  1. 训练模型 接下来,我们开始训练模型。我们选择 Adam 优化器,并使用均方误差(MSE)作为损失函数。在每个 epoch 中,我们都会迭代一次所有的训练数据,通过反向传播更新模型参数。
代码语言:javascript
代码运行次数:0
复制
# 设置优化器和损失函数
optim = torch.optim.Adam(net.parameters(), lr=0.001)
Loss = nn.MSELoss()

# 训练模型
for epoch in range(100):
    loss = None
    for batch_x, batch_y in dataloader:
        # 前向传播
        y_predict = net(batch_x)
        
        # 计算损失
        loss = Loss(y_predict, batch_y)
        
        # 清空梯度
        optim.zero_grad()
        
        # 反向传播
        loss.backward()
        
        # 更新参数
        optim.step()
    
    # 每10步打印一次训练日志
    if (epoch + 1) % 10 == 0:
        print(f"训练步骤: {epoch+1}, 模型损失: {loss.item()}")
代码语言:javascript
代码运行次数:0
复制
训练步骤: 10, 模型损失: 0.12506699562072754
训练步骤: 20, 模型损失: 0.024437546730041504
训练步骤: 30, 模型损失: 0.08189699053764343
训练步骤: 40, 模型损失: 0.03138166293501854
训练步骤: 50, 模型损失: 0.00651053711771965
训练步骤: 60, 模型损失: 0.0032562180422246456
训练步骤: 70, 模型损失: 0.00018047125195153058
训练步骤: 80, 模型损失: 0.005476313643157482
训练步骤: 90, 模型损失: 0.0014593529049307108
训练步骤: 100, 模型损失: 0.0008746677194721997
  1. 可视化 训练完成后,我们可以使用训练好的模型来进行预测,并将预测结果与真实数据进行比较。
代码语言:javascript
代码运行次数:0
复制
# 绘制真实数据与预测数据的对比
plt.figure(figsize=(12, 7), dpi=160)
plt.plot(x, y, label="实际值", marker="X")
plt.plot(x, predict.detach().numpy(), label="预测值", marker='o')
plt.xlabel("x", size=15)
plt.ylabel("cos(x)", size=15)
plt.xticks(size=15)
plt.yticks(size=15)
plt.legend(fontsize=15)
plt.show()

通过绘制图表,我们可以清楚地看到,训练好的神经网络已经很好地拟合了余弦函数,并且与真实数据非常接近。

** 通过本篇教程,我们了解了如何使用 PyTorch 从零开始构建神经网络,并使用该网络拟合一个简单的余弦曲线。我们逐步演示了数据准备、网络构建、模型训练以及预测可视化的过程。希望通过这篇文章,你能够掌握神经网络的基本操作,并能够将其应用于其他任务中。**

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-12-31,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、背景
  • 二、代码解析
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档