前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >机器学习练手项目-猫狗分类器

机器学习练手项目-猫狗分类器

作者头像
GeekLiHua
发布2025-01-21 16:46:01
发布2025-01-21 16:46:01
3300
代码可运行
举报
文章被收录于专栏:JavaJava
运行总次数:0
代码可运行

机器学习练手项目-猫狗分类器

猫狗分类器是一个深度学习项目,旨在识别图像中的猫和狗。通过训练神经网络模型,该项目可以从输入的图像中准确地识别出是猫还是狗。这个项目可以应用于许多实际场景,如图像分类、动物识别等。

1. 准备数据集

首先,需要准备一个包含猫和狗图像的数据集。您可以从各种来源收集这些图像数据,例如网络上的图片库或自己的图片文件夹。确保每个类别的图像都放在单独的文件夹中,并将它们命名为相应的类别。

2. 数据预处理

在加载图像数据之前,需要进行一些预处理步骤。这包括调整图像大小、将图像转换为张量以及标准化图像数据。通过torchvision.transforms模块,我们可以方便地实现这些预处理步骤。

代码语言:javascript
代码运行次数:0
复制
import torch
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader

3. 构建模型

将使用卷积神经网络(CNN)来构建我们的猫狗分类器。CNN是一种在图像识别任务中非常流行的深度学习模型。

代码语言:javascript
代码运行次数:0
复制
import torch.nn as nn
import torch.nn.functional as F

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        # 定义卷积层、池化层和全连接层
        self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
        self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
        self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(64 * 8 * 8, 512)
        self.fc2 = nn.Linear(512, 2)

    def forward(self, x):
        # 前向传播函数
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = self.pool(F.relu(self.conv3(x)))
        x = x.view(-1, 64 * 8 * 8)  # 将特征展平为一维向量
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

4. 训练模型

将使用训练集来训练我们的模型,并使用测试集来评估模型的性能。

代码语言:javascript
代码运行次数:0
复制
import torch.optim as optim

# 实例化模型、定义损失函数和优化器
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        try:
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            if (i+1) % 100 == 0:
                print(f'Epoch [{epoch+1}/{num_epochs}], Iteration [{i+1}/{len(train_loader)}], Loss: {running_loss/100:.4f}')
                running_loss = 0.0
        except Exception as e:
            print(f"Error processing batch {i}:", str(e))
            continue

print('Finished Training')

5. 评估模型

在训练完成后,需要评估模型在测试集上的性能。

代码语言:javascript
代码运行次数:0
复制
model.eval()
correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        images, labels = data
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy of the network on the {total} test images: {100 * correct / total}%')

完整代码:

代码语言:javascript
代码运行次数:0
复制
import os
import torch
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import matplotlib.pyplot as plt
from PIL import Image

# 设置随机种子
torch.manual_seed(42)

# 数据预处理,包括调整大小、转换为张量、以及标准化
transform = transforms.Compose([
    transforms.Resize((64, 64)),  # 将图像调整为 64x64 大小
    transforms.ToTensor(),         # 将图像转换为张量
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])  # 标准化图像数据
])

# 加载训练数据集,使用ImageFolder自动加载图像数据,并应用上面定义的数据预处理
# root参数指定数据集根目录
train_dataset = ImageFolder(root='D:\\系统默认\\桌面\\python\\PetImages\\', transform=transform)

# 计算训练集的大小
train_size = int(0.8 * len(train_dataset))
test_size = len(train_dataset) - train_size

# 划分训练集和测试集
train_dataset, test_dataset = torch.utils.data.random_split(train_dataset, [train_size, test_size])

# 创建数据加载器,用于加载训练集和测试集的数据
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)

# 定义卷积神经网络模型
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        # 定义卷积层
        self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
        self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
        self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
        # 定义池化层
        self.pool = nn.MaxPool2d(2, 2)
        # 定义全连接层
        self.fc1 = nn.Linear(64 * 8 * 8, 512)
        self.fc2 = nn.Linear(512, 2)

    def forward(self, x):
        # 前向传播函数,定义网络结构
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = self.pool(F.relu(self.conv3(x)))
        x = x.view(-1, 64 * 8 * 8)  # 将特征展平为一维向量
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型、定义损失函数和优化器
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        try:
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            if (i+1) % 100 == 0:
                print(f'Epoch [{epoch+1}/{num_epochs}], Iteration [{i+1}/{len(train_loader)}], Loss: {running_loss/100:.4f}')
                running_loss = 0.0
        except Exception as e:
            print(f"Error processing batch {i}:", str(e))
            continue

print('Finished Training')

# 保存模型
torch.save(model.state_dict(), 'cat_dog_model.pth')

# 测试模型
model.eval()
correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        images, labels = data
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy of the network on the {total} test images: {100 * correct / total}%')
  • 运行结果样子

想要获取数据集在这个地址里面:GitHub地址

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-01-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 机器学习练手项目-猫狗分类器
    • 1. 准备数据集
    • 2. 数据预处理
    • 3. 构建模型
    • 4. 训练模型
    • 5. 评估模型
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档