首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >journal of neuroscience:面孔的神经表征与眼动模式相协调

journal of neuroscience:面孔的神经表征与眼动模式相协调

作者头像
用户1279583
发布于 2020-02-13 09:07:16
发布于 2020-02-13 09:07:16
6210
举报
文章被收录于专栏:思影科技思影科技

眼球运动是人类视觉功能如何完成的一个信号。近期大量的研究持续验证了在面孔识别过程中特征视觉采样的策略。然而这些个体差异是否反映在特殊的神经差异上目前尚没有研究报告。为探讨该问题本研究首先记录了观察者在面孔再认过程中的眼动数据;其次通过EEG数据获得了他们的面孔辨别神经反应 (neural face discrimination response)。实验结果发现在面孔再认阶段,注视点固定时间更长的面部特征诱发的面部辨别神经反应更大。该模式在不同的被试中 (eye lookers vs.mouth lookers) 同样被发现,且在注视点首次固定在兴趣位置时这种模式就会出现。本研究表明,眼球运动在视觉处理过程中起着重要的作用,可以为神经系统提供判断特定观察者的判断信息,并且面孔身份的有效处理涉及特质,而不是整个面孔。该研究由来自瑞士的Stacchi, Ramon, Leo和Caldara 完成,发表在杂志the journal of neuroscience上。

研究背景:

视觉系统对外部感知觉信息的处理依赖于眼球选择性移动到任务相关信息上,而面部信息的处理有特殊的凝视策略。长久以来,被普遍认同的面部识别策略为T型注视点模式 (T-shaped fixationpattern),即覆盖了眼睛和嘴巴位置的T型区域。然而,近十年来涌现的大量研究对面孔识别策略提出了新的见解。例如,caldara (2017) 的综述文章指出不论东方还是西方人在面孔识别过程中都会分别采用T型策略和中央注视偏好 (more centralfixation bias),两种策略使用熟练程度是类似的。另外大量基于个体被试的研究发现,面孔观察者会采用独特的面孔采样策略,并且这种策略在时间进程是稳定的,且与行为表现相关。特别需要指出的是,仅仅在西方面孔观察者群体中发现的特征视觉采样策略就与周知的T型策略不同。尽管支持特征视觉采样策略的研究如雨后春笋,但目前我们对该策略在整个面孔识别过程中扮演的角色以及神经机制知之甚少。通过比较各种范式的优缺点,本研究采用了新旧判断任务(眼动实验)和FPVS范式 (脑电实验,fast-periodic visual stimulation)来对眼球运动与面孔识别的神经机制之间的关系进行了探究。

方法:

被试:20名西方白种人被试(11女,两位左利手,平均年龄:25±3岁)。其中三名被试因为眼动数据质量差被剔除。

实验流程:

眼动实验设计:

从KDEF(西方人面孔数据库)中选取56张西方白种人面孔、从AFID(亚洲人面孔数据库,可在文章中找到具体文章和网址)中选取26张东方亚洲人面孔组成视觉刺激。面孔刺激呈现在VIEWPIxx / 3D显示器(1920 x 1080像素分辨率,刷新率120 Hz)上,被试距离显示器距离75厘米。面孔图片大小为12.56°(从下巴到发际线的高度)x 9.72°(宽度)视角。

被试要完成两个学习与再认blocks。在每个block中,被试需要学习14张面孔身份(男女各半),14张面孔随机呈现三种(中性、高兴和厌恶)表情。30秒钟之后,28张面孔图片(14张旧图片)依次呈现要求被试又好又快的做出新旧判断。在学习阶段,面孔呈现5秒钟,而在再认阶段,面孔呈现至被试完成反应。眼动数据全程记录。

数据收集与处理:

眼动行为数据通过EyeLink 1000设备(时间分辨率1000 Hz)记录。在实验开始前运用九点注视点程序对注视点进行校准。每个试次开始前被试皆会被要求将注视点集中到屏幕中央位置直到刺激呈现。其余额外变量严格控制。

在使用Nystrom等人 (2010) 的算法剔除眼动伪迹和眼跳伪迹之后,用新旧判断任务学习与再认阶段的眼动数据分别绘制个体注视点地形图。眼动数据预处理之后,对每个被试注视点地形图分别平均。使用这些个体注视点地形图和兴趣区 (regions of interest, ROIs,图1) 来计算个体的注视强度,即累计注视时间。ROIs覆盖了1.8°视角的面积,即在FPVS任务中包括中心点在内的十个注视位置 (viewingpositions, VPs)。

图1 兴趣区模式图

脑电:

实验设计:

采用50张(男女各半)中性情绪面孔,将多余的面部特质裁剪掉,呈现在灰色的背景下。刺激每张11.02°×8.81°,被试与显示器距离70 cm。刺激按照FPVS范式进行呈现,每个试次持续62秒,包括一系列相同身份的面孔和每个试次中第7个面孔的oddball面孔。按照VPs分为10种条件,每种条件按照性别不同分为两种子条件,因此实验总共20试次。刺激按照正弦明暗对比呈现,并在每个试次的开始和结束设置两秒钟淡入淡出。注视点颜色发生变化以使被试保持注意力,并要求被试对相应颜色进行按键。在EEG数据记录时不再进行眼动数据记录。详见图2。

图2 FPVS流程示意图

数据记录与处理:

EEG数据用Biosemi active-Two amplifier系统记录,128导银/氯化银电极帽,采样频率1024 Hz。使用Letwaves 5 进行数据分析。首先进行0.1–100 Hz带通滤波,随后数据降频至256 Hz并根据条件切分为20个66秒的epoch,刺激前后各包含两秒。ICA用来剔除每个被试的眼动伪迹。采用插值替换的方法对坏电极进行替换,对ERP数据重参考至全脑平均。最后每个被试的每个条件所有试次平均。

频域:

对平均后的ERP进行快速傅里叶转换并提取振幅。通过从每个频率振幅中减去周围20个bin的平均值进行基线校正,排除相邻的两个bin。最后,对于每个被试和条件,oddball频率及其显著谐波的基线校正总和提供了神经人脸识别的指标。谐波显著性水平被定义为所有的条件平均Z分数低于1.64 (p <.05)。

统计分析:

运用iMPA4工具箱进行线性回归以探索再认阶段注视点偏向(注视持续时间的Z分数)和面部辨别神经信号(FPVS反应的振幅)的关系。

为探索同一被试的注视点地形图是否与EEG反应有强相关,研究中随机选择被试的注视点地形如与另一个被试的EEG反应进行相关检验,并进行了线性回归分析。这个过程重复了1000次。研究运用严格的方法控制了显著性的取值。研究对学习阶段的眼动数据也进行了如上述的统计分析。

眼动和FPVS反应结果

群体和个体层面的注视点及神经信号描述

在个体层面,多数被试的注视点地形图并没有很完美地拟合总平均的地形图,这证明了特征视觉采样策略的存在。总平均之后的面孔辨别神经反应振幅随着VPs的变化而变化,在中央注视位置时振幅最大。然而,神经反应的振幅也因被试的不同而呈现出不同态势。详见图3。

图3 注视点地形图

如果您对脑电数据处理感兴趣,欢迎参阅思影科技脑电课程及数据处理服务,可添加微信:siyingyxf详细了解:

第七届脑电数据处理入门班(重庆)

第十九届脑电数据处理中级班(南京)

第六届脑电信号数据处理提高班(南京)

思影数据处理业务四:EEG/ERP数据处理

回归分析:注视点与神经反应之间的关系

对个体注视持续时间和FPVS反应的数据进行了数据驱动的回归分析,结果显示了右侧枕颞叶和中顶电极簇上的正相关。枕颞叶电极簇包含12个显著的电极,最大效应出现在P10、最小效应出现在P9。尽管注视点与神经反应在被试间存在差异,但所有的被试都发现了这种正相关。中顶区电极簇包含13个电极点,最大效应出现在C1最小效应出现在FCz。详见图5,表2。

图5 注视持续时间与面部识别神经反应之间的关系图

表2 EEG结果数值统计图

为探究相同被试的注视点地形图与EEG反应是否相关良好,对不同被试之间的EEG反应与注视点地形图进行了相关分析。第一个和第二个注视点的统计分析发现了显著的结果,但在学习阶段只有第一个注视点上发现了显著的效应。详见图6,表3。

图6 注视点偏向数据结果图

表3 学习阶段回归分析结果

特定注视点偏好可以解释本研究中发现的关系吗?

为探究在再认阶段被试展示出的注视点偏好能否预期注视点和神经反应之间的强相关,本研究首先按照振幅对每个被试的注视点地形图进行排序,发现展现出相同注视点模式的被试之间相关性强度可能不同,但不同注释模式被试之间的相关性强度反而接近。计算每个被试注视点地形图与总平均注视点模式之间的距离并将该距离与相关强度(注视点与神经反应)之间计算斯皮尔曼相关,并没有发现两者的显著相关关系。这表明,注视点偏好可能不是本研究发现结果的解释性原因,其原因可能主要受到个体注视策略的调节。详见图7。

图7 注视点地形图和注视点-神经反应相关关系强度图

总结:

本研究探讨了面孔特征视觉采样策略和不同面孔注视点下的面孔辨别神经反应振幅之间的关系。结果表明,每个被试视觉信息采样的方法是不同的,并且这种差异与神经反应呈显著正相关。具体地,在自由观看状态下注视点集中时间更久的位置会诱发更大的面孔辨别神经反应。总而言之,本研究发现,面部信息处理过程包含明显的特征取样策略和对优先取样信息独特的神经反应。而基于第一个注视点或者第二个注视点的分析同样发现了这样的关系可能说明这种特征注视策略在面部信息处理进程的早期就被唤醒。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-01-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 思影科技 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
BRAIN脑电研究:使用快速球方法评估阿尔茨海默病识别记忆
早期诊断阿尔茨海默病需要对相关结构和功能变化敏感的生物标志物。虽然在结构生物标记物的开发方面已经取得了相当大的进展,但早期识别变化的功能性生物标记物仍然是需要的。我们提出了快速球(Fastball),一种新的脑电测量被动和客观的识别记忆的方法,不需要行为记忆反应或对任务的理解。年轻人、老年人和老年痴呆症患者(每组20人)完成了快速球任务,持续时间不到3分钟。参与者被动地观看快速呈现的图像,EEG评估他们根据先前的暴露程度(即旧/新)自动区分图像的能力。参与者没有被要求注意之前看到的图像,也没有做出任何行为反应。在快速球任务之后,参与者完成了一个有两个选项的强制选择(2AFC)任务,以测量他们对先前看到的刺激的显性行为识别。快球EEG检测到,与健康老年人相比,阿尔茨海默病患者的识别记忆明显受损,而行为识别在阿尔茨海默病患者和健康老年人之间没有显著差异。使用快速球识别记忆测量方法,阿尔茨海默病患者与健康老年人对照者的识别准确率较高,而使用行为2AFC准确性的识别性能较差。健康老龄化没有显著影响,老年人和年轻人在快速球任务和行为2AFC任务中的表现相当。阿尔茨海默病的早期诊断提供了早期治疗的可能性。快速球提供了一种检测识别反应的替代方法,有望在行为表现缺陷尚不明显的阶段作为疾病病理的功能标记。它是被动的,无创的,快速和使用廉价的,可扩展的EEG技术。快速球为痴呆的识别评估提供了一种新的强有力的方法,并为早期诊断工具的开发打开了一扇新的大门。本文发表在BRAIN杂志。
用户1279583
2022/02/28
5300
BRAIN脑电研究:使用快速球方法评估阿尔茨海默病识别记忆
视觉字符串大脑左半球皮层特异化预测学龄前儿童基本字符-声音关联认知能力
本项研究通过记录左半球视觉区域内2分钟电生理反应的方法,在5岁学龄前儿童群体中发现了稳定且独特的对文本信息敏感的脑电信号。这一脑电信号与学龄前儿童的基本字符认知能力(一项独立采取的行为测量)有显著相关性,说明存在除了视觉熟悉之外的特异化神经回路,这些发现还强调了高度灵敏客观的非行为测量方法对发展中个体字符认知能力(阅读能力的前身)评估的潜力。本研究由比利时鲁汶大学心理科学研究所和神经科学研究所的Aliette Lochya, Marie VanReybroecka, 和Bruno Rossion发表在PNAS上。
用户1279583
2019/11/14
8760
思影科技眼动数据处理服务
眼动数据看似简单,但其数据结构紧密结合了平面空间特性和时间特性。单纯的感兴趣分析,不仅难以挖掘出数据中有用的隐含信息,在文章发表的过程中,也会由于分析手段简单而不易引起审稿人的重视,难以发出高质量的文章。因此,思影科技结合最新的眼动数据处理技术,为客户的认知科学研究保驾护航。
用户1279583
2020/05/11
1.3K0
脑电研究:冥想提高年轻人的持续注意
来自加利福利亚大学的DavidA. Ziegler等人在Nature Human Behaviour杂志上发表了关于冥想与年轻人持续性注意关系的研究。该研究使用了一款冥想训练软件(MediTrain)来研究冥想对持续性注意以及工作记忆的影响。
用户1279583
2019/09/17
1K0
脑电研究:冥想提高年轻人的持续注意
Neuron:空间注意中的Alpha同步和神经反馈控制
以往研究表明,Alpha同步的降低与注意增强相关,然而alpha同步的增加却与注意无关。为了验证alpha同步是否与注意存在因果关系,来自麻省理工学院的研究者使用MEG手段进行了研究,相关成果发表在著名期刊Neuron上。
用户1279583
2020/02/13
9190
Neuron:空间注意中的Alpha同步和神经反馈控制
北大心理与认知学院院长方方:人类注意力图和动态机制
6月22日,北京智源大会举行了认知神经基础专题论坛,来自北京师范大学认知神经科学与学习国家重点实验室的毕彦超教授、北京大学心理与认知科学学院的方方教授、北京师范大学心理学部的刘嘉教授、北京大学计算机系的吴思教授、中国科学院自动化研究所的余山教授分别做了报告,共同探究认知神经科学能为AI带来什么启发。
脑机接口社区
2020/07/15
4580
北大心理与认知学院院长方方:人类注意力图和动态机制
成人β-地中海贫血患者的注意、反应抑制和ERP变化
在β地中海贫血(β-TM)领域的ERP研究很少,且局限于儿童。SivanRaz,Ariel Koren和Carina Levin在British Journal of Haematology的文章指出,采用ERPs探讨成年β地中海贫血(beta thalassaemia major, β-TM)患者与健康对照者的认知神经功能差异。本研究采用停止信号任务(stop-signal task)测量注意力和反应抑制功能(二者是执行控制的指标),并将行为任务表现、ERPs和血红蛋白水平进行相关分析。结果显示,β-TM患者的认知能力受损、反应时间比对照组长、血红蛋白水平与Go刺激反应时负相关。β-TM患者的神经活动明显改变,反映在几个任务相关的ERP成分(P1、N1、P3)峰值增大。可能的解释是,β-TM患者在应对认知挑战时需要调用更多的认知资源。血红蛋白水平与各ERP成分存在显著相关性,血红蛋白越低,ERP波幅越高。
用户1279583
2019/07/10
6760
Nature Neuroscience:经颅交流电刺激(tACS)有助于老年人工作记忆的恢复
来自波士顿大学的研究者Reinhart 和Nguyen最近在Nature Neuroscience的发文揭示了认知功能衰退的核心特征——工作记忆缺陷:来源于局部脑回路与远程脑回路间的失连,通过颞叶皮层中的θ-γ相位-振幅耦合和跨额颞叶皮层的θ相位同步来实例化。研究者使用非侵入性的刺激程序调节60~76岁成人远程θ波间的相互作用。25分钟的刺激后,将频率调谐至个体脑网络的动力学特征。结果不仅观察到神经同步模式的优先增加,而且也观察到了信息流的发送者与接收者在额叶皮层内、颞叶皮层内以及两皮层间的返回关系。该操作能迅速提升工作记忆能力,且持续时间超过50分钟。该结果能帮助研究者深入了解与年龄相关的认知损害的生理基础,并为今后针对认知衰退方面的非药理学干预奠定了基础。
用户1279583
2019/06/06
3K0
Nature Neuroscience:经颅交流电刺激(tACS)有助于老年人工作记忆的恢复
Science advances:正念疗法矫正阿片类药物使用者的享乐失调
请点击上面“思影科技”四个字,选择关注我们,思影科技专注于脑影像数据处理,涵盖(fMRI,结构像,DTI,ASL,EEG/ERP,FNIRS,眼动)等,希望专业的内容可以给关注者带来帮助,欢迎留言讨论,也欢迎参加思影科技的其他课程。(文末点击浏览)
用户1279583
2019/11/25
7220
Nature子刊 | ChineseEEG: 一个基于中文语料刺激的高通道EEG数据集
研究人员意识到,目前主流的语言处理研究和认知神经科学研究多集中在英语等西方语言上,但全球有数亿人使用其他语言,特别是中文。中文具有独特的语法结构、丰富的字符系统和复杂的语义网络,这使得它在认知处理上可能有着不同于英语的特点。因此,深入研究中文语言的神经机制不仅有助于全面理解人类语言处理的普遍规律,还能为跨文化、跨语言的认知科学研究提供重要的理论依据和数据支持。
脑机接口社区
2024/06/21
8260
Nature子刊 | ChineseEEG: 一个基于中文语料刺激的高通道EEG数据集
用于追踪认知任务期间的亚秒级脑动态的高密度脑电
这项工作为社区提供了高密度脑电图(HD-EEG, 256个通道)数据集,这些数据集是在无任务和任务相关范式下收集的。它包括43名健康的参与者执行视觉命名和拼写任务,视觉和听觉命名任务和视觉工作记忆任务,以及静息状态。HD-EEG数据以脑成像数据结构(bid)格式提供。这些数据集可以用来(i)追踪大脑网络动力学和在不同条件下(命名/拼写/其他)的次秒级时间尺度,和模态(听觉、视觉)的快速重新配置和相互比较,(ii)验证几个方法中包含的参数,这些方法是用来通过头皮脑电图估计大脑皮层网络,例如最优通道数量和感兴趣区域数量的问题,以及(iii)允许到目前为止使用HD-EEG获得的结果的再现性。我们希望,这些数据集的发布将推动新方法的发展,可以用来评估大脑皮层网络,并更好地了解大脑在休息和工作时的一般功能。 数据可从https://openneuro.org免费获取。 1.1.背景和概要 新的证据表明,来自于空间上遥远的大脑区域之间的通信导致大脑功能(失能)。尽管在过去的几十年里,功能性磁共振成像已经给神经科学带来了革命性的变化,但其固有的时间分辨率较差,这是限制其用于跟踪快速大脑网络动态的主要缺陷,而这种网络动态是多个大脑(认知和感知运动)过程执行的基础。脑电图/脑磁图(EEG/MEG)是一种独特的非侵入性技术,能够在毫秒的时间尺度上跟踪大脑动态。 在无任务范式和任务相关范式下,已经有一些研究使用脑电图/脑磁图源连通性方法来跟踪大脑皮层网络。然而,尽管人类连接组项目(HCP)和几个脑电图数据集的MEG数据集模型得到了人们的称赞,但只有很少的数据可以同时用于休息和任务,并且在不同任务中开放获取的高密度脑电图(HD-EEG, 256个通道)数据仍然缺失。 HD-EEG与复杂的信号处理算法相结合,正日益将EEG转变为一种潜在的神经成像模式。最近的脑电图研究揭示了在休息和认知任务期间跟踪快速功能连接动态的可能性。此外,一些研究报告了HD-EEG数据(与低脑电通道密度相比)在某些病理条件下的潜在应用,如癫痫网络的定位和神经退行性疾病中认知功能下降的检测。此外,新出现的证据表明,在一定程度上,使用HD-EEG可以捕获皮层下的结构。在这种背景下,无任务和任务相关的可用性开放HD-EEG数据库正在快速成为强制性的(i)解读(次秒级)重组的脑功能网络在认知,(ii)开发新的信号处理方法,充分估计大脑皮层网络和(iii)允许使用HD-EEG到目前为止结果的再现性。 在此,我们提供了第一个开放获取的HD-EEG(256通道)数据集,在休息状态和4种不同的任务(视觉命名、听觉命名、视觉拼写和工作记忆)下记录。部分数据已经被用于开发和分析各种信号处理方法。 特别地,我们的努力集中在对休息和图片命名期间的脑功能网络的估计上。然而,这些研究都没有描述数据集的细节,而且到目前为止的工作只用了小部分数据。在这项工作中,我们提供了所有必要的细节和一个开放的数据库,以便国际科学界能够在无任务和与任务相关的范式中自由地产生对大脑功能的更好的理解。这也将有助于新方法的开发,以提高目前使用的HD-EEG评估皮质脑网络的技术的准确性,并通过比较结果和未来的meta分析来使得这些技术互相面对。我们希望这个数据集将有助于使脑电图源空间网络分析成为一种成熟的技术,以解决认知和临床神经科学中的一些问题。 1.2 方法 1.2.1 数据采集 数据是2012年至2017年在法国雷恩进行的两项不同实验中收集的。第一数据集包括视觉对象名字的命名和拼写(图1)。第二个数据集包括静息状态、视觉/听觉命名和视觉工作记忆任务(图2)。同样的设备中使用的数据集和录音都在同一个地方(雷恩大学医院中心)。采用HD-EEG系统(EGI,256个电极)以1 KHz采样率记录脑活动,电极阻抗保持在50 k ω以下。两项研究的参与者是不同的。他们提供了参与的书面知情同意,并完成了一些纳入/排除标准问卷(总结见表1)。参与者坐在法拉第结构房间的扶手椅上。房间由百叶窗减弱的自然光照亮。我们的参与者的头大约位于屏幕前1米。图像以白色背景上的黑色图画的形式集中呈现,没有任何尺寸修改(10厘米x 10厘米)。这种设置对应于从注视点的最大靠近度2.86度的视角,从而使整个图像处于参与者的中心凹视野内。声音通过50瓦的罗技扬声器显示,没有任何音频隔离的可能性。
悦影科技
2021/05/01
6660
用于追踪认知任务期间的亚秒级脑动态的高密度脑电
Biological Psychiatry ERP结合fMRI研究:精神分裂症(SZ)和自闭症患者(ASD)视感觉识别的模式差异
文献导读:不同疾病在临床症状上的相同表现往往会引起研究者对其成因的探究,因为相似的临床表现可能是由于类似的神经基础导致的,而不同病理成因又会对这种相似的神经机制产生特异性的影响,明确不同疾病在相似临床特征表现背后的神经机制的相似性和特异性可能能够为临床治疗提供更加针对性的建议。
用户1279583
2019/08/01
1K0
Biological Psychiatry ERP结合fMRI研究:精神分裂症(SZ)和自闭症患者(ASD)视感觉识别的模式差异
使用时空-频率模式分析从脑电数据的一些试验中提取N400成分
关于高小榕教授的介绍,可以查看本社区之前分享的《第1期 | 国内脑机接口领域专家教授汇总》
脑机接口社区
2020/07/28
9010
BRAIN:额颞叶痴呆患者情绪加工的任务态功能磁共振研究
情绪信息加工受损是额颞叶痴呆综合征的一个核心特征,但其潜在的神经机制却很难被描述和测量。要想在该领域取得进展有赖于对大脑活动中的功能进行测量,以及对情绪加工中诸成分,如感觉解码、情绪分类和情绪传染等进行有效的分离。在功能测量方面,task-fMRI有着极强的优势,它可以通过观察受试者在加工任务时所产生的血氧水平变化来反映受试者在加工该任务时大脑中的活跃区域,从而来达到对大脑特定功能加工区域的观察目的。但是,task-fMRI实验中也存在着相当多的噪声影响,除去静息态也会面对的头动噪声和机器噪声外,情绪识别类的任务对被试的心理生理状况(如心跳)和眼动状况(如瞳孔大小变化)会产生额外的噪声影响,因此,对这部分信息进行收集并将其考虑进统计模型中,对于数据的精细解释是有必要的。
用户1279583
2019/10/10
1.4K0
BRAIN:额颞叶痴呆患者情绪加工的任务态功能磁共振研究
伪影校正时选择脑电图的独立成分的实用指南
背景:脑电图数据很容易受到非神经来源信号的污染。独立分量分析(ICA)可以帮助EEG数据对这些伪影进行校正。伪迹的独立成分(ICs)可以由专家通过目测识别。但是伪迹特性有时是模糊的或难以注意到的,甚至专家也可能不同意如何对特定伪迹进行分类。因此,将伪迹属性告知用户,并给他们机会进行干预是很重要的。
用户1279583
2022/02/28
2.7K2
伪影校正时选择脑电图的独立成分的实用指南
注视眼动的控制和功能
人类和其他物种通过每秒两到三次的快速眼球运动(扫视)来探索视觉场景。虽然在扫视的短暂间隔中,眼睛可能看起来不动,但在快速照相机下可以观察到眼球运动始终存在,甚至当观察者注视一个单一点时也是如此。这些运动发生在获取和处理视觉信息的特定时期,它们的功能一直是争论不休的话题。最近在控制正常眼动活动期间的视网膜刺激方面的技术进展,已经阐明了注视眼动的视觉贡献以及这些运动可以被控制的程度。在本文中回顾的大量证据表明,注视眼动是视觉系统处理精细空间细节策略的重要组成部分;它们既能精确定位视网膜上的刺激,又能将空间信息编码到关节的时空域中。本文发表在Annual Review of Vision Science杂志。
用户1279583
2020/07/14
1.4K0
注视眼动的控制和功能
Neuroimage:准备电位是否只在运动前出现?
2019年10月,伦敦大学认知神经科学研究所的Travers团队在Neuroimage期刊上发表了一篇关于准备电位(RP)是否只发生在运动前的研究,其研究结果支持经典的RP解释,即RP只发生在运动行动之前。    准备电位RP是自主运动之前缓慢上升的负电位,传统观点认为RP发生在辅助运动区和前辅助运动区,当大脑无意识的决定运动时RP开始出现,RP在运动命令通过主运动区传送出去后达到峰值,RP主要反映了运动准备过程。经典的RP解释包含两层假设,一是RP是针对自主运动(voluntary actions)的,它应该发生在自主运动之前,而不是在非自主运动之前;二是当被试可能产生运动但并没有运动时RP不应该出现。由于RP的测量方法,第二个假设很难验证。由于脑电图记录固有的信噪比低的特点,因此在单个trial中很难识别出自主运动之前的RP。RP研究通常基于运动的时刻提取trials,然后将大量的试次平均在一起。任何与RP波形相似但不会导致动作的单次试验脑电图都将被忽略(下文称:RP-like events),因为在它们之后并没有发生运动,根据提取trials的规则,并没有提取这些数据段。因此,研究者认为自主运动前的RP是基于有偏差的抽样得到到的, RP-likeevents很可能一直在发生,但是并没有被研究者注意到。   最近,Schurger和他的同事们提出了随机决策模型,它的一个重要结论是,在整段数据中都应该出现RP-like events,只是当RP-like events的幅值超过决策阈值时,就会产生运动,反之,不产生运动,一般提取的RP属于前者的叠加结果。   在该文的研究中,Travers团队使用模板匹配的方法来研究RP-like evets出现的时间点,研究其是否只在自主运动之前出现。
悦影科技
2020/11/18
7360
Neuroimage:准备电位是否只在运动前出现?
EEG微状态:注意力缺陷多动症ADHD新的功能生物标记物
背景:ADHD的EEG研究历来都集中于EEG频谱或者事件相关电位上。本研究中,我们探讨了一种替代性框架——EEG微状态(MS)作为一种检查ADHD大尺度皮层动态性的新方法,MS是重复出现地形图模式的聚类。
悦影科技
2022/11/07
5930
静息态EEG微状态:现状及未来发展方向
EEG具有高时间分辨率,是研究大脑电活动的有力工具。已有研究提出数种从EEG信号中提取信息的方法,微状态分析是其中一种,它认为多通道EEG记录是一系列准稳态的微状态,每个微状态的特征是整个通道独特的地形图拓扑结构。该方法同时考虑整个大脑皮层区域的信号,能评估大尺度脑网络功能,并且这些网络的损坏与数种神经精神障碍有关。来自哈佛医学院Berenson-Allen无创脑刺激中心和多伦多大学Temerty大脑治疗干预中心的Arjun Khanna、Faranak Farzan等人在Neuroscience & Biobehavioral Reviews发表文章。包含几方面内容:
用户1279583
2019/09/03
1.5K0
静息态EEG微状态:现状及未来发展方向
Current Biology脑电研究:自闭症患者双眼竞争较慢
请点击上面“思影科技”四个字,选择关注我们,思影科技专注于脑影像数据处理,涵盖(fMRI,结构像,DTI,ASL,EEG/ERP,FNIRS,眼动)等,希望专业的内容可以给关注者带来帮助,欢迎留言讨论,也欢迎参加思影科技的其他课程。(文末点击浏览)
用户1279583
2019/11/01
1.2K0
Current Biology脑电研究:自闭症患者双眼竞争较慢
推荐阅读
相关推荐
BRAIN脑电研究:使用快速球方法评估阿尔茨海默病识别记忆
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档