前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >GOES-17、18MCMIPC 系列 ABI 2 级云层和水汽数据集

GOES-17、18MCMIPC 系列 ABI 2 级云层和水汽数据集

作者头像
此星光明
发布2025-01-20 17:54:27
发布2025-01-20 17:54:27
4500
代码可运行
举报
运行总次数:0
代码可运行

GOES-17 MCMIPC 系列 ABI 2 级云层和水汽成像 CONUS

简介

云层和水分成像产品的分辨率均为 2 公里。 1-6 波段为反射波段。 无量纲的 "反射系数 "以太阳天顶角为标准。 这些波段有助于确定云、植被、雪/冰和气溶胶的特征。 第 7-16 波段为发射波段。 大气顶部 (TOA) 的亮度温度以开尔文为单位测量。 这些波段支持根据发射特性对地表、云层、水蒸气、臭氧、火山灰和尘埃进行定性。 README 前称 "GOES West",卫星已被储存。 NOAA 卫星和产品运行办公室有一个一般卫星信息频道,提供最新状态信息。

GOES-17 MCMIPC 系列 ABI 2 级云层和水汽成像 CONUS 数据是由美国国家海洋和大气管理局(NOAA)的地球观测卫星-17号 GOES-East卫星获取的。这些数据提供了关于云层和水汽分布的高分辨率图像,覆盖了美国大陆范围(CONUS)。

这些数据是使用GOES-17卫星上的高级气象成像仪(ABI)获取的。ABI是一种先进的传感器,能够以非常高的空间分辨率(约2公里)和时间分辨率(每分钟一次)获取大气和地球表面的图像数据。

云层成像数据提供了关于云的位置、类型和云顶高度的信息。这对于天气预报和气候研究非常有用,可以帮助预测降雨、风暴和其他天气现象的发展趋势。

水汽成像数据提供了关于大气中水汽含量的信息。这对于监测大气湿度、气候模式分析和研究大气扩散等方面非常有用。

这些数据的高分辨率和实时更新频率使其成为天气预报和气候研究的重要工具。它们可以帮助气象学家和研究人员追踪天气变化、监测风暴系统的演变,并提供关于降雨、大气湿度和云的更准确的信息。

摘要

Dataset Availability

2018-12-04T16:30:38Z–2023-01-10T16:00:00Z

Dataset Provider

NOAA

Earth Engine Snippet

ee.ImageCollection("NOAA/GOES/17/MCMIPC")

ee.ImageCollection("NOAA/GOES/17/MCMIPF")

ee.ImageCollection("NOAA/GOES/17/MCMIPM")

GOES -18

ee.ImageCollection("NOAA/GOES/18/MCMIPC")

ee.ImageCollection("NOAA/GOES/18/MCMIPF")

ee.ImageCollection("NOAA/GOES/18/MCMIPM")

Resolution 2000 meters

Bands

Name

Units

Min

Max

Wavelength

Description

CMI_C01

Reflectance factor

0

1.3

0.45-0.49µm

Visible - Blue Daytime aerosol over land, coastal water mapping.

DQF_C01

0

4

Data quality flags

CMI_C02

Reflectance factor

0

1.3

0.59-0.69µm

Visible - Red Daytime clouds, fog, insolation, winds

DQF_C02

0

4

Data quality flags

CMI_C03

Reflectance factor

0

1.3

0.846-0.885µm

Near-IR - Veggie Daytime vegetation, burn scar, aerosol over water, winds

DQF_C03

0

4

Data quality flags

CMI_C04

Reflectance factor

0

1.3

1.371-1.386µm

Near-IR - Cirrus Daytime cirrus cloud

DQF_C04

0

4

Data quality flags

CMI_C05

Reflectance factor

0

1.3

1.58-1.64µm

Near-IR - Snow/Ice Daytime cloud-top phase and particle size, snow

DQF_C05

0

4

Data quality flags

CMI_C06

Reflectance factor

0

1.3

2.225-2.275µm

Near IR - Cloud Particle Size Daytime land, cloud properties, particle size, vegetation, snow

DQF_C06

0

4

Data quality flags

CMI_C07

K

197.31

411.86

3.80-4.00µm

Infrared - Shortwave Window Brightness

DQF_C07

0

4

Data quality flags

CMI_C08

K

138.05

311.06

5.77-6.6µm

Infrared - Upper-level water vapor High-level atmospheric water vapor, winds, rainfall Brightness

DQF_C08

0

4

Data quality flags

CMI_C09

K

137.7

311.08

6.75-7.15µm

Infrared - Mid-level water vapor Mid-level atmospheric water vapor, winds, rainfall Brightness

DQF_C09

0

4

Data quality flags

CMI_C10

K

126.91

331.2

7.24-7.44µm

Infrared - Lower-level water vapor Lower-level water vapor, winds, and sulfur dioxide Brightness

DQF_C10

0

4

Data quality flags

CMI_C11

K

127.69

341.3

8.3-8.7µm

Infrared - Cloud-top phase Total water for stability, cloud phase, dust, sulfur dioxide, rainfall Brightness

DQF_C11

0

4

Data quality flags

CMI_C12

K

117.49

311.06

9.42-9.8µm

Infrared - Ozone Total ozone, turbulence, winds

DQF_C12

0

4

Data quality flags

CMI_C13

K

89.62

341.27

10.1-10.6µm

Infrared - "Clean" longwave window Surface and clouds Brightness

DQF_C13

0

4

Data quality flags

CMI_C14

K

96.19

341.28

10.8-11.6µm

Infrared - Longwave window Imagery, sea surface temperature, clouds, rainfall Brightness

DQF_C14

0

4

Data quality flags

CMI_C15

K

97.38

341.28

11.8-12.8µm

Infrared "Dirty" longwave Total water, volcanic ash, sea surface temperature Brightness

DQF_C15

0

4

Data quality flags

CMI_C16

K

92.7

318.26

13.0-13.6µm

Infrared - CO_2 longwave Air temperature, cloud heights Brightness

DQF_C16

0

4

Data quality flags

DQF_C01 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C02 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C03 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C04 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C05 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C06 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C07 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C08 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C09 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C10 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C11 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C12 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C13 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C14 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C15 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

DQF_C16 Class Table

Value

Color

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Image Properties

Name

Type

Description

CMI_C01_offset

DOUBLE

Offset to add to scaled CMI_C01 values

CMI_C01_scale

DOUBLE

Scale to multiply with raw CMI_C01 values

CMI_C02_offset

DOUBLE

Offset to add to scaled CMI_C02 values

CMI_C02_scale

DOUBLE

Scale to multiply with raw CMI_C02 values

CMI_C03_offset

DOUBLE

Offset to add to scaled CMI_C03 values

CMI_C03_scale

DOUBLE

Scale to multiply with raw CMI_C03 values

CMI_C04_offset

DOUBLE

Offset to add to scaled CMI_C04 values

CMI_C04_scale

DOUBLE

Scale to multiply with raw CMI_C04 values

CMI_C05_offset

DOUBLE

Offset to add to scaled CMI_C05 values

CMI_C05_scale

DOUBLE

Scale to multiply with raw CMI_C05 values

CMI_C06_offset

DOUBLE

Offset to add to scaled CMI_C06 values

CMI_C06_scale

DOUBLE

Scale to multiply with raw CMI_C06 values

CMI_C07_offset

DOUBLE

Offset to add to scaled CMI_C07 values

CMI_C07_scale

DOUBLE

Scale to multiply with raw CMI_C07 values

CMI_C08_offset

DOUBLE

Offset to add to scaled CMI_C08 values

CMI_C08_scale

DOUBLE

Scale to multiply with raw CMI_C08 values

CMI_C09_offset

DOUBLE

Offset to add to scaled CMI_C09 values

CMI_C09_scale

DOUBLE

Scale to multiply with raw CMI_C09 values

CMI_C10_offset

DOUBLE

Offset to add to scaled CMI_C10 values

CMI_C10_scale

DOUBLE

Scale to multiply with raw CMI_C10 values

CMI_C11_offset

DOUBLE

Offset to add to scaled CMI_C11 values

CMI_C11_scale

DOUBLE

Scale to multiply with raw CMI_C11 values

CMI_C12_offset

DOUBLE

Offset to add to scaled CMI_C12 values

CMI_C12_scale

DOUBLE

Scale to multiply with raw CMI_C12 values

CMI_C13_offset

DOUBLE

Offset to add to scaled CMI_C13 values

CMI_C13_scale

DOUBLE

Scale to multiply with raw CMI_C13 values

CMI_C14_offset

DOUBLE

Offset to add to scaled CMI_C14 values

CMI_C14_scale

DOUBLE

Scale to multiply with raw CMI_C14 values

CMI_C15_offset

DOUBLE

Offset to add to scaled CMI_C15 values

CMI_C15_scale

DOUBLE

Scale to multiply with raw CMI_C15 values

CMI_C16_offset

DOUBLE

Offset to add to scaled CMI_C16 values

CMI_C16_scale

DOUBLE

Scale to multiply with raw CMI_C16 values

代码1

代码语言:javascript
代码运行次数:0
复制
// Band aliases.
var BLUE = 'CMI_C01';
var RED = 'CMI_C02';
var VEGGIE = 'CMI_C03';
var GREEN = 'GREEN';
// 16 pairs of CMI and DQF followed by Bah 2018 synthetic green.
// Band numbers in the EE asset, 0-based.
var NUM_BANDS = 33;
// Skipping the interleaved DQF bands.
var BLUE_BAND_INDEX = (1 - 1) * 2;
var RED_BAND_INDEX = (2 - 1) * 2;
var VEGGIE_BAND_INDEX = (3 - 1) * 2;
var GREEN_BAND_INDEX = NUM_BANDS - 1;

// Visualization range for GOES RGB.
var GOES_MIN = 0.0;
var GOES_MAX = 0.7;  // Alternatively 1.0 or 1.3.
var GAMMA = 1.3;

var goesRgbViz = {
  bands: [RED, GREEN, BLUE],
  min: GOES_MIN,
  max: GOES_MAX,
  gamma: GAMMA
};

var applyScaleAndOffset = function(image) {
  image = ee.Image(image);
  var bands = new Array(NUM_BANDS);
  for (var i = 1; i < 17; i++) {
    var bandName = 'CMI_C' + (100 + i + '').slice(-2);
    var offset = ee.Number(image.get(bandName + '_offset'));
    var scale =  ee.Number(image.get(bandName + '_scale'));
    bands[(i-1) * 2] = image.select(bandName).multiply(scale).add(offset);

    var dqfName = 'DQF_C' + (100 + i + '').slice(-2);
    bands[(i-1) * 2 + 1] = image.select(dqfName);
  }

  // Bah, Gunshor, Schmit, Generation of GOES-16 True Color Imagery without a
  // Green Band, 2018. https://doi.org/10.1029/2018EA000379
  // Green = 0.45 * Red + 0.10 * NIR + 0.45 * Blue
  var green1 = bands[RED_BAND_INDEX].multiply(0.45);
  var green2 = bands[VEGGIE_BAND_INDEX].multiply(0.10);
  var green3 = bands[BLUE_BAND_INDEX].multiply(0.45);
  var green = green1.add(green2).add(green3);
  bands[GREEN_BAND_INDEX] = green.rename(GREEN);

  return ee.Image(ee.Image(bands).copyProperties(image, image.propertyNames()));
};

var collection = 'NOAA/GOES/17/MCMIPC/';
var imageName = '2020211190617600000';
var assetId = collection + imageName;
var image = applyScaleAndOffset(assetId);
Map.setCenter(-120, 43, 5);
Map.addLayer(image, goesRgbViz);

代码2

代码语言:javascript
代码运行次数:0
复制
// Band aliases.
var BLUE = 'CMI_C01';
var RED = 'CMI_C02';
var VEGGIE = 'CMI_C03';
var GREEN = 'GREEN';
// 16 pairs of CMI and DQF followed by Bah 2018 synthetic green.
// Band numbers in the EE asset, 0-based.
var NUM_BANDS = 33;
// Skipping the interleaved DQF bands.
var BLUE_BAND_INDEX = (1 - 1) * 2;
var RED_BAND_INDEX = (2 - 1) * 2;
var VEGGIE_BAND_INDEX = (3 - 1) * 2;
var GREEN_BAND_INDEX = NUM_BANDS - 1;

// Visualization range for GOES RGB.
var GOES_MIN = 0.0;
var GOES_MAX = 0.7;  // Alternatively 1.0 or 1.3.
var GAMMA = 1.3;

var goesRgbViz = {
  bands: [RED, GREEN, BLUE],
  min: GOES_MIN,
  max: GOES_MAX,
  gamma: GAMMA
};

var applyScaleAndOffset = function(image) {
  image = ee.Image(image);
  var bands = new Array(NUM_BANDS);
  for (var i = 1; i < 17; i++) {
    var bandName = 'CMI_C' + (100 + i + '').slice(-2);
    var offset = ee.Number(image.get(bandName + '_offset'));
    var scale =  ee.Number(image.get(bandName + '_scale'));
    bands[(i-1) * 2] = image.select(bandName).multiply(scale).add(offset);

    var dqfName = 'DQF_C' + (100 + i + '').slice(-2);
    bands[(i-1) * 2 + 1] = image.select(dqfName);
  }

  // Bah, Gunshor, Schmit, Generation of GOES-16 True Color Imagery without a
  // Green Band, 2018. https://doi.org/10.1029/2018EA000379
  // Green = 0.45 * Red + 0.10 * NIR + 0.45 * Blue
  var green1 = bands[RED_BAND_INDEX].multiply(0.45);
  var green2 = bands[VEGGIE_BAND_INDEX].multiply(0.10);
  var green3 = bands[BLUE_BAND_INDEX].multiply(0.45);
  var green = green1.add(green2).add(green3);
  bands[GREEN_BAND_INDEX] = green.rename(GREEN);

  return ee.Image(ee.Image(bands).copyProperties(image, image.propertyNames()));
};

var collection = 'NOAA/GOES/17/MCMIPF/';
var imageName = '2020211200032100000';
var assetId = collection + imageName;
var image = applyScaleAndOffset(assetId);
Map.addLayer(image, goesRgbViz);

代码3

代码语言:javascript
代码运行次数:0
复制
// Demonstrates displaying GOES-17 Mesoscale images.

// Band names.
var BLUE = 'CMI_C01';
var RED = 'CMI_C02';
var VEGGIE = 'CMI_C03';
var GREEN = 'GREEN';

/**
 * Properly scales an MCMIPM image.
 *
 * @param {ee.Image} image An unaltered MCMIPM image.
 * @return {ee.Image}
 */
var applyScaleAndOffset = function(image) {
  var names = image.select('CMI_C..').bandNames();

  // Scale the radiance bands using the image's metadata.
  var scales = names.map(function(name) {
    return image.getNumber(ee.String(name).cat('_scale'));
  });
  var offsets = names.map(function(name) {
    return image.getNumber(ee.String(name).cat('_offset'));
  });
  var scaled = image.select('CMI_C..')
                   .multiply(ee.Image.constant(scales))
                   .add(ee.Image.constant(offsets));

  return image.addBands({srcImg: scaled, overwrite: true});
};

/**
 * Computes and adds a green radiance band to a MCMIPM image.
 *
 * The image must already have been properly scaled via applyScaleAndOffset.
 *
 * For more information on computing the green band, see:
 *   https://doi.org/10.1029/2018EA000379
 *
 * @param {ee.Image} image An image to add a green radiance band to. It
 *     must be the result of the applyScaleAndOffset function.
 * @return {ee.Image}
 */
var addGreenBand = function(image) {
  function toBandExpression(bandName) { return 'b(\'' + bandName + '\')'; }

  var B_BLUE = toBandExpression(BLUE);
  var B_RED = toBandExpression(RED);
  var B_VEGGIE = toBandExpression(VEGGIE);

  // Green = 0.45 * Red + 0.10 * NIR + 0.45 * Blue
  var GREEN_EXPR = GREEN + ' = 0.45 * ' + B_RED + ' + 0.10 * ' + B_VEGGIE +
      ' + 0.45 * ' + B_BLUE;

  var green = image.expression(GREEN_EXPR).select(GREEN);
  return image.addBands(green);
};


var COLLECTION = 'NOAA/GOES/17/MCMIPM';

// Select a subset of the collection, correct the values, and add a green band.
var START = ee.Date('2020-09-09T21:03:00');
var END = START.advance(10, 'minutes');
var collection = ee.ImageCollection(COLLECTION)
  .filterDate(START, END)
  .map(applyScaleAndOffset)
  .map(addGreenBand);

// Separates the two domains.
var domain1_col = collection.filter('domain == 1');
var domain2_col = collection.filter('domain == 2');

// Note that there are 20 assets, 10 in each domain.
var size = ee.String('sizes: collection = ').cat(collection.size());
var size1 = ee.String('domain1 = ').cat(domain1_col.size());
var size2 = ee.String('domain2 = ').cat(domain2_col.size());
print(size.cat('  →  ').cat(size1).cat(' and ').cat(size2));

// Visualization parameters.
var goesRgbViz = { bands: [RED, GREEN, BLUE], min: 0.0, max: 0.38, gamma: 1.3 };

// Displays a sample image from domain 1 and 2.
Map.addLayer(domain1_col.first(), goesRgbViz, 'Domain 1');
Map.addLayer(domain2_col.first(), goesRgbViz, 'Domain 2');

Map.setCenter(-133, 50, 3);

引用

  • Bah, Gunshor, Schmit, Generation of GOES-16 True Color Imagery without a Green Band, 2018. doi:10.1029/2018EA000379
  • Product User Guide (PUG) Volume 5, L2+ Products.
  • Schmit, T., Griffith, P., et al, (2016), A closer look at the ABI on the GOES-R series, Bull. Amer. Meteor. Soc., 98(4), 681-698. doi:10.1175/BAMS-D-15-00230.
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-01-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 简介
    • 摘要
  • 代码1
  • 代码2
  • 代码3
  • 引用
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档