前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >数据分析50+高频场景实战 业绩提升立竿见影|果fx

数据分析50+高频场景实战 业绩提升立竿见影|果fx

原创
作者头像
baikeu电抗
发布2024-12-25 19:00:26
发布2024-12-25 19:00:26
1290
举报

数据分析师是一个在现代企业中扮演重要角色的职业,主要负责从数据中提取有价值的信息,以支持决策和业务发展。

以下是五个典型的数据分析模型的精讲,包括每个模型的简要说明和相应的 Python 代码示例。

1. 线性回归 (Linear Regression)

说明:线性回归用于预测一个连续变量与一个或多个自变量之间的线性关系。

代码语言:txt
复制
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 数据加载
data = pd.read_csv('data.csv')
X = data[['feature1', 'feature2']]  # 自变量
y = data['target']  # 因变量

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 模型训练
model = LinearRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')

2. 逻辑回归 (Logistic Regression)

说明:逻辑回归用于二分类问题,预测事件发生的概率。

代码语言:txt
复制
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 数据加载
data = pd.read_csv('data.csv')
X = data[['feature1', 'feature2']]
y = data['binary_target']

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 模型训练
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

3. 决策树 (Decision Tree)

说明:决策树用于分类和回归,通过树形结构进行决策。

代码语言:txt
复制
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report

# 数据加载
data = pd.read_csv('data.csv')
X = data[['feature1', 'feature2']]
y = data['target']

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 模型训练
model = DecisionTreeClassifier()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估
report = classification_report(y_test, y_pred)
print(report)

4. 随机森林 (Random Forest)

说明:随机森林是集成学习方法,通过构建多个决策树来提高预测准确性。

代码语言:txt
复制
from sklearn.ensemble import RandomForestClassifier

# 数据加载
data = pd.read_csv('data.csv')
X = data[['feature1', 'feature2']]
y = data['target']

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 模型训练
model = RandomForestClassifier()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

5. K-均值聚类 (K-Means Clustering)

说明:K-均值聚类用于将数据分成 K 个簇,常用于无监督学习。

代码语言:txt
复制
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

# 数据加载
data = pd.read_csv('data.csv')
X = data[['feature1', 'feature2']]

# 模型训练
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)

# 预测
clusters = kmeans.predict(X)

# 可视化
plt.scatter(X['feature1'], X['feature2'], c=clusters, cmap='viridis')
plt.title('K-Means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()

这些模型涵盖了回归、分类和聚类等不同类型的数据分析任务,适用于多种实际应用场景。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 线性回归 (Linear Regression)
  • 2. 逻辑回归 (Logistic Regression)
  • 3. 决策树 (Decision Tree)
  • 4. 随机森林 (Random Forest)
  • 5. K-均值聚类 (K-Means Clustering)
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档