两函数重叠部分的面积;
在图像中特殊的卷积核用于图形特征提取;
【卷积神经网络】8分钟搞懂CNN,动画讲解喜闻乐见_哔哩哔哩_bilibili
卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC
(1)卷积层:用它来进行特征提取,如下:
输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同。通过一个filter与输入图像的卷积可以得到一个28*28*1的特征图,上图是用了两个filter得到了两个特征图;
卷积层与全连接层的区别:
从上面可以看出,全连接层的权重矩阵是固定的,即每一次feature map的输入过来必须都得是一定的大小(即与权重矩阵正好可以相乘的大小),所以网络最开始的输入图像尺寸必须固定,才能保证传送到全连接层的feature map的大小跟全连接层的权重矩阵匹配。
卷积层就不需要固定大小了,因为它只是对局部区域进行窗口滑动,所以用卷积层取代全连接层成为了可能
参数共享,会不会导致效果很差
解决:增加卷积核,多个
pooling
下采样