Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >Kafka命令行操作

Kafka命令行操作

作者头像
编程那点事
发布于 2023-02-25 08:04:25
发布于 2023-02-25 08:04:25
24100
代码可运行
举报
文章被收录于专栏:java编程那点事java编程那点事
运行总次数:0
代码可运行

1)查看当前集群中已存在的主题topic

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
bin/kafka-topics.sh --zookeeper hd09:2181 --list

2)创建topic

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
bin/kafka-topics.sh --zookeeper hd09-01:2181 --create --replication-facto r 3 --partitions 1 --topic guan

--zookeeper 连接zk集群 --create 创建 --replication-factor 副本 --partitions 分区 --topic 主题名

3)删除主题

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
bin/kafka-topics.sh --zookeeper hd09-01:2181 --delete --topic guan 

4)发送消息 生产者启动:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
bin/kafka-console-producer.sh --broker-list hd09-01:9092 --topic guan

消费者启动:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
 bin/kafka-console-consumer.sh --bootstrap-server hd09-01:9092 --topic guan --from-beginning

5)查看主题详细信息

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
bin/kafka-topics.sh --zookeeper hd09-01:2181 --describe --topic guan
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-03-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
机器学习算法中分类知识总结!
本文将介绍机器学习算法中非常重要的知识—分类(classification),即找一个函数判断输入数据所属的类别,可以是二类别问题(是/不是),也可以是多类别问题(在多个类别中判断输入数据具体属于哪一个类别)。与回归问题(regression)相比,分类问题的输出不再是连续值,而是离散值,用来指定其属于哪个类别。分类问题在现实中应用非常广泛,比如垃圾邮件识别,手写数字识别,人脸识别,语音识别等。
Datawhale
2020/10/23
6250
机器学习算法中分类知识总结!
超强,必会的机器学习评估指标
构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。 选择正确的验证指标就像选择一副水晶球:它使我们能够以清晰的视野看到模型的性能。 在本指南中,我们将探讨分类和回归的基本指标和有效评估模型的知识。 学习何时使用每个指标、优点和缺点以及如何在 Python 中实现它们。
算法金
2024/06/28
2180
超强,必会的机器学习评估指标
【干货】7种最常用的机器学习算法衡量指标
【导读】你可能在你的机器学习研究或项目中使用分类精度、均方误差这些方法衡量模型的性能。当然,在进行实验的时候,一种或两种衡量指标并不能说明一个模型的好坏,因此我们需要了解常用的几种机器学习算法衡量指标
WZEARW
2018/04/16
3.8K0
【干货】7种最常用的机器学习算法衡量指标
【机器学习】一文详尽介绍模型评估指标
在机器学习领域通常会根据实际的业务场景拟定相应的不同的业务指标,针对不同机器学习问题如回归、分类、排序,其评估指标也会不同。
石晓文
2019/12/02
7.3K0
A.深度学习基础入门篇[二]:机器学习常用评估指标:AUC、mAP、IS、FID、Perplexity、BLEU、ROUGE等详解
机器学习的评价指标有精度、精确率、召回率、P-R曲线、F1 值、TPR、FPR、ROC、AUC等指标,还有在生物领域常用的敏感性、特异性等指标。
汀丶人工智能
2023/04/06
1.7K0
A.深度学习基础入门篇[二]:机器学习常用评估指标:AUC、mAP、IS、FID、Perplexity、BLEU、ROUGE等详解
【干货】不止准确率:为分类任务选择正确的机器学习度量指标(附代码实现)
【导读】本文是数据科学研究者William Koehrsen撰写的技术博文,介绍了在分类模型中需要用到的度量标准。我们知道,准确率是我们在分类任务中最常用到的度量指标,但是单纯的准确率并不能说明模型的
WZEARW
2018/04/08
2.1K0
【干货】不止准确率:为分类任务选择正确的机器学习度量指标(附代码实现)
机器学习模型评估指标
实际应用中,评估指标依具体问题灵活使用,在选择模型和调整参数过程中选择正确的指标十分重要。模型评估目标应以业务目标为导向,选择最合适的评估指标。
aiplus
2021/11/04
2.4K0
机器学习|深度学习基础知识
最近在看深度学习的一些资料,发现有些基础知识比较模糊,于是重新整理了一下深度学习的基础知识。
用户1904552
2025/02/27
900
机器学习|深度学习基础知识
大数据技术之_19_Spark学习_08_Spark 机器学习_01_机器学习概述 + 机器学习的相关概念 + 算法常用指标
  一组数据的集合被称作数据集,用于模型训练的数据集叫训练集,用于测试的数据集叫测试集。一个数据集包含多条数据,一条数据包含多个属性。
黑泽君
2019/05/14
5520
大数据技术之_19_Spark学习_08_Spark 机器学习_01_机器学习概述 + 机器学习的相关概念 + 算法常用指标
搞懂机器学习的常用评价指标!
我与评价指标的首次交锋是第一次实习面试时,面试官开头就问分类任务的评价指标。我当时TP,FP,FN,TN各种组合一顿上,回答得乱七八糟。后来经历多了,发现评价指标的确是面试的高频考点。
Datawhale
2021/07/30
5710
A.深度学习基础入门篇[二]:机器学习常用评估指标:AUC、mAP、IS、FID、Perplexity、BLEU、ROUGE等详解
A.深度学习基础入门篇二:机器学习常用评估指标:AUC、mAP、IS、FID、Perplexity、BLEU、ROUGE等详解
汀丶人工智能
2023/04/05
1.8K0
A.深度学习基础入门篇[二]:机器学习常用评估指标:AUC、mAP、IS、FID、Perplexity、BLEU、ROUGE等详解
机器学习中分类任务的常用评估指标和python代码实现
混淆矩阵定义为(类x类)大小的矩阵,因此对于二进制分类,它是2x2,对于3类问题,它是3x3,依此类推。为简单起见,让我们考虑二元分类并了解矩阵的组成部分。
deephub
2021/03/10
1.7K0
机器学习中分类任务的常用评估指标和python代码实现
机器学习模型性能的10个指标
尽管大模型非常强大, 但是解决实践的问题也可以不全部依赖于大模型。一个不太确切的类比,解释现实中的物理现象,未必要用到量子力学。有些相对简单的问题,或许一个统计分布就足够了。对机器学习而言, 也不用言必深度学习与神经网络,关键在于明确问题的边界。
半吊子全栈工匠
2023/12/28
4K0
机器学习模型性能的10个指标
机器学习评测指标概述
TP(True Positive):P表示预测为正类;同时实际也是正类,这是正确的,所以是True,组合为TP,也叫真阳
我有一只萌妹子
2022/06/23
1.4K0
机器学习评测指标概述
【机器学习 | 分类指标大全】全面解析分类评估指标:从准确率到AUC,多分类问题也不在话下, 确定不来看看?
🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)
计算机魔术师
2023/09/24
1K0
机器学习评价指标大汇总
在使用机器学习算法的过程中,针对不同场景需要不同的评价指标,在这里对常用的指标进行一个简单的汇总。 一、分类 1. 精确率与召回率 精确率与召回率多用于二分类问题。精确率(Precision)指的是模型判为正的所有样本中有多少是真正的正样本;召回率(Recall)指的是所有正样本有多少被模型判为正样本,即召回。设模型输出的正样本集合为\$A\$,真正的正样本集合为\$B\$,则有: \$\text{Precision}(A,B)=\frac{|A\bigcap B|}{|A|},\text{Recall}(
小莹莹
2018/04/24
1.3K0
机器学习评价指标大汇总
一文让你了解AI产品的测试 评价人工智能算法模型的几个重要指标
如何测试人工智能产品越来越受到广大测试工程师的关注,由于人工智能的测试预言(Test Oracle)不是像普通软件产品那么明确,到目前为止,基于大数据的第四代人工智能产品的测试,主要集中在“对大数据测试”“白盒测试”“基于样本分析算法的优劣”以及“对最终产品的验收测试”。“对大数据测试”主要针对数据阶段验证、对数据计算验证和对输出阶段验证;“白盒测试”主要考虑神经元覆盖(Neuron Coverage)、阈值覆盖率(Threshold Coverage)、符号变更率(Sign Change Coverage)、值变更覆盖率(Value Change Coverage)、符号-符号覆盖率(Sign-SignCoverage)和层覆盖(LayerCoverage)这六个指标;“对最终产品的验收测试”可以采用对传统软件验收测试的方法,基于业务来进行测试,比如对于人脸识别系统,是否可以在各个人脸角度变化,光线等条件下正确识别人脸。本文重点讨论的是“基于样本分析算法的优劣”。
顾翔
2020/06/10
3.5K0
一份非常全面的机器学习分类与回归算法的评估指标汇总
读完机器学习算法常识之后,你已经知道了什么是欠拟合和过拟合、偏差和方差以及贝叶斯误差。在这篇给大家介绍一些机器学习中离线评估模型性能的一些指标。
abs_zero
2018/10/23
2.3K0
一份非常全面的机器学习分类与回归算法的评估指标汇总
机器学习评估指标的十个常见面试问题
来源:DeepHub IMBA本文约2700字,建议阅读5分钟本文整理了10个常见的问题。 评估指标是用于评估机器学习模型性能的定量指标。它们提供了一种系统和客观的方法来比较不同的模型并衡量它们在解决特定问题方面的成功程度。通过比较不同模型的结果并评估其性能可以对使用哪些模型、如何改进现有模型以及如何优化给定任务的性能做出正确的决定,所以评估指标在机器学习模型的开发和部署中发挥着至关重要的作用。所以评估指标是面试时经常会被问到的基础问题,本文整理了10个常见的问题。 1、你能在机器学习的背景下解释精度和召
数据派THU
2023/02/23
6760
机器学习评估指标的十个常见面试问题
机器学习模型评估指标总结!
本文对机器学习模型评估指标进行了完整总结。机器学习的数据集一般被划分为训练集和测试集,训练集用于训练模型,测试集则用于评估模型。针对不同的机器学习问题(分类、排序、回归、序列预测等),评估指标决定了我们如何衡量模型的好坏。
Datawhale
2020/10/23
1.6K0
机器学习模型评估指标总结!
推荐阅读
相关推荐
机器学习算法中分类知识总结!
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档