数据预处理
模型选择与训练
# 导入所需的库
import cv2
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, LSTM
# 数据采集函数
def collect_data():
# 通过摄像头获取顶板图像
image = cv2.imread('顶板图像.jpg')
# 从位移传感器获取边坡位移数据
displacement = get_displacement_data()
# 获取其他相关数据(地质数据、气象数据等)
other_data = get_other_data()
return image, displacement, other_data
# 数据预处理函数
def preprocess_data(image, displacement, other_data):
# 图像灰度化
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 图像归一化
normalized_image = gray_image / 255.0
# 位移数据滤波
filtered_displacement = filter_displacement(displacement)
# 整合数据
data = np.concatenate((normalized_image.flatten(), [filtered_displacement], other_data))
return data
# 构建模型函数
def build_model():
model = Sequential()
# 添加卷积层
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(image_height, image_width, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
# 添加全连接层
model.add(Dense(128, activation='relu'))
# 添加 LSTM 层处理时间序列数据
model.add(LSTM(64))
# 添加输出层
model.add(Dense(1, activation='sigmoid'))
return model
# 训练模型函数
def train_model(model, train_data, train_labels, epochs, batch_size):
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(train_data, train_labels, epochs=epochs, batch_size=batch_size, validation_split=0.2)
# 风险评估与预警函数
def assess_risk(model, data):
risk = model.predict(np.array([data]))[0][0]
if risk > risk_threshold:
send_warning()
# 主函数
if __name__ == '__main__':
# 采集和预处理数据
image, displacement, other_data = collect_data()
data = preprocess_data(image, displacement, other_data)
# 构建和训练模型
model = build_model()
train_data, train_labels = load_training_data()
train_model(model, train_data, train_labels, epochs=100, batch_size=32)
# 实时风险评估与预警
while True:
image, displacement, other_data = collect_data()
data = preprocess_data(image, displacement, other_data)
assess_risk(model, data)数据采集
数据预处理
特征提取
模型选择与训练
# 导入所需的库
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
# 数据采集函数
def collect_data():
# 从传感器获取设备运行数据
vibration = get_vibration_data()
temperature = get_temperature_data()
pressure = get_pressure_data()
# 获取设备运行状态标签
label = get_device_status()
return vibration, temperature, pressure, label
# 数据预处理函数
def preprocess_data(vibration, temperature, pressure):
# 数据标准化
scaler = StandardScaler()
data = np.array([vibration, temperature, pressure]).T
normalized_data = scaler.fit_transform(data)
# 数据清洗(去除异常值和缺失值)
cleaned_data = clean_data(normalized_data)
return cleaned_data
# 特征提取函数
def extract_features(data):
# 计算时域特征
mean = np.mean(data, axis=0)
variance = np.var(data, axis=0)
peak = np.max(data, axis=0)
# 计算频域特征(使用快速傅里叶变换 FFT)
fft_data = np.fft.fft(data, axis=0)
frequency = np.fft.fftfreq(data.shape[0])
power_spectrum = np.abs(fft_data) ** 2
# 合并特征
features = np.concatenate((mean, variance, peak, power_spectrum))
return features
# 构建模型函数
def build_model(model_type):
if model_type =='svm':
model = SVC(kernel='rbf', C=1.0, gamma='scale')
elif model_type == 'random_forest':
model = RandomForestClassifier(n_estimators=100, max_depth=5)
elif model_type == 'neural_network':
model = MLPClassifier(hidden_layer_sizes=(100, 50), activation='relu', solver='adam', max_iter=500)
return model
# 训练模型函数
def train_model(model, train_data, train_labels):
model.fit(train_data, train_labels)
# 故障诊断与预警函数
def diagnose_fault(model, data):
prediction = model.predict(data)
if prediction == 1: # 假设 1 表示故障状态
send_warning()
# 主函数
if __name__ == '__main__':
# 采集和预处理数据
vibration, temperature, pressure, label = collect_data()
data = preprocess_data(vibration, temperature, pressure)
# 特征提取
features = extract_features(data)
# 构建和训练模型
model_type ='svm' # 可选择不同的模型
model = build_model(model_type)
train_data, train_labels = load_training_data()
train_model(model, train_data, train_labels)
# 实时故障诊断与预警
while True:
vibration, temperature, pressure, _ = collect_data()
data = preprocess_data(vibration, temperature, pressure)
features = extract_features(data)
diagnose_fault(model, [features])数据采集
数据预处理
模型选择与训练
行为识别与预警
# 导入所需的库
import cv2
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model
# 数据采集函数
def collect_data():
# 从摄像头获取视频帧
frame = cv2.VideoCapture(0).read()[1]
return frame
# 数据预处理函数
def preprocess_data(frame):
# 图像裁剪和缩放
resized_frame = cv2.resize(frame, (image_width, image_height))
# 转换为灰度图像(可根据需要选择)
gray_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
return gray_frame
# 构建模型函数(假设已经训练好模型并保存为 'person_behavior_model.h5')
def build_model():
model = load_model('person_behavior_model.h5')
return model
# 行为识别与预警函数
def recognize_behavior(model, frame):
# 对图像进行预处理
processed_frame = preprocess_data(frame)
# 扩展维度以匹配模型输入要求
input_frame = np.expand_dims(processed_frame, axis=0)
# 使用模型进行预测
predictions = model.predict(input_frame)
# 解析预测结果,获取人员位置和行为类别
person_boxes, behavior_classes = parse_predictions(predictions)
for box, behavior in zip(person_boxes, behavior_classes):
if behavior == '未佩戴安全帽': # 假设行为类别为 '未佩戴安全帽'
send_warning(box)
# 主函数
if __name__ == '__main__':
# 构建模型
model = build_model()
# 实时行为识别与预警
while True:
frame = collect_data()
recognize_behavior(model, frame)原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。