首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >KDD 2023 | 时空数据(Spatial-Temporal)Research论文总结

KDD 2023 | 时空数据(Spatial-Temporal)Research论文总结

作者头像
时空探索之旅
发布2024-11-19 16:22:50
发布2024-11-19 16:22:50
2720
举报
文章被收录于专栏:时空探索之旅时空探索之旅

2023 KDD论文接收情况:Research track(研究赛道)接收率:22.1%(313/1416),ADS Track(Applied Data Science,应用数据科学赛道)接收率:25.4%(184/725)。

(蹭一下KDD 2024第一轮Rebuttal的热度,预祝各位rebuttal顺利。)

本文总结了在两个赛道时空数据学习的相关论文(如有疏漏,欢迎大家补充),ADS Track在次条

Research track中有3个session中与时空数据(城市计算)紧密相关,还有一些其余session中有一些做的时空数据任务。

Research Track Topic:时空预测,信控优化,轨迹表示学习,多模态,神经过程,迁移学习等。

Spatiotemporal Data

1. Maintaining the Status Quo: Capturing Invariant Relations for OOD Spatiotemporal Learning

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599421

代码https://github.com/zzyy0929/KDD23-CauSTG

作者:Zhengyang Zhou (University of Science and Technology of China), Qihe Huang (University of Science and Technology of China), Kuo Yang (University of Science and Technology of China), Kun Wang (University of Science and Technology of China), Xu Wang (University of Science and Technology of China), Yudong Zhang (University of Science and Technology of China), Yuxuan Liang (University of Science and Technology of China), Yang Wang (University of Science and Technology of China)

关键词:分布外泛化,时空OOD,因果学习,不变学习,动态图

CauSTG

2. Generalizable Low-Resource Activity Recognition with Diverse and Discriminative Representation Learning

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599360

代码https://github.com/microsoft/robustlearn

作者:Xin Qin (Beijing Key Lab. of Mobile Com., CAS), Jindong Wang (Microsoft Research Asia), Shuo Ma (Beijing Key Lab. of Mobile Com., CAS), Wang Lu (Beijing Key Lab. of Mobile Com., CAS), Yongchun Zhu (Beijing Key Lab. of Mobile Com., CAS), Xin Xie (Microsoft Research Asia), Yiqiang Chen (Beijing Key Lab. of Mobile Com., CAS)

关键词:普适计算,迁移学习

DDLearn

3. Localised Adaptive Spatial-Temporal Graph Neural Network

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599418

作者:Wenying Duan (Nanchang University), Xiaoxi He (University of Macau), Zimu Zhou (City University of Hong Kong), Lothar Thiele (ETH Zurich), Hong Rao (Nanchang University)

关键词:时空预测,时空图神经网络,稀疏图

ASTGNNs

4. Spatio-Temporal Diffusion Point Processes

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599511

代码https://github.com/tsinghua-fib-lab/Spatio-temporal-Diffusion-Point-Processes

作者:Yuan Yuan (Department of Electronic Engineering, Tsinghua University), Jingtao Ding (Department of Electronic Engineering, Tsinghua University), Chenyang Shao (Department of Electronic Engineering, Tsinghua University), Depeng Jin (Department of Electronic Engineering, Tsinghua University), Yong Li (Department of Electronic Engineering, Tsinghua University)

关键词:扩散模型,点过程

DSTPP

5. ST-iFGSM: Enhancing Robustness of Human Mobility Signature Identification Model via Spatial-Temporal Iterative FGSM

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599513

代码https://github.com/mhu3/ST-Siamese-Attack

作者:Mingzhi Hu (Worcester Polytechnic Institute), Xin Zhang (Worcester Polytechnic Institute), Yanhua Li (Worcester Polytechnic Institute), Xun Zhou (University of Iowa), Jun Luo (Lenovo Group Limited)

关键词:稳健性,对抗攻击,驾驶员检测,异常检测

Spatial-temporal HuMID

6. On Hierarchical Disentanglement of Interactive Behaviors for Multimodal Spatiotemporal Data with Incompleteness

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599448

作者:Jiayi Chen (University of Virginia), Aidong Zhang (University of Virginia)

关键词:多模态时空数据,无监督学习,知识表示和推理,时空解耦,缺失数据,自编码器

Urban Data I

7. Robust Spatiotemporal Traffic Forecasting with Reinforced Dynamic Adversarial Training

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599492

代码https://github.com/usail-hkust/RDAT

作者:Fan Liu (The Hong Kong University of Science and Technology (Guangzhou)), Weijia Zhang (The Hong Kong University of Science and Technology (Guangzhou)), Hao Liu (The Hong Kong University of Science and Technology (Guangzhou); The Hong Kong University of Science and Technology)

关键词:交通预测、对抗网络,稳健性

RDAT

8. Pattern Expansion and Consolidation on Evolving Graphs for Continual Traffic Prediction

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599463

作者:Binwu Wang (University of Science and Technology of China), Yudong Zhang (University of Science and Technology of China), Xu Wang (University of Science and Technology of China), Pengkun Wang (Suzhou Institute for Advanced Research, University of Science and Technology of China), Zhengyang Zhou (Suzhou Institute for Advanced Research, University of Science and Technology of China), LEI BAI (Shanghai AI Laboratory), Yang Wang (University of Science and Technology of China)

关键词:交通预测、持续学习

PECPM

9. TransformerLight: A Novel Sequence Modeling Based Traffic Signaling Mechanism via Gated Transformer

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599530

代码https://github.com/Smart-Trafficlab/TransformerLight

作者:Qiang Wu (University of Electronic Science and Technology of China), Mingyuan Li (Beijing University of Posts and Telecommunications), Jun Shen (University of Wollongong), Linyuan Lü(University of Science and Technology of China), Bo Du (University of Wollongong), Ke Zhang (Beijing University of Posts and Telecommunications)

关键词:信控优化

好文分享 |【KDD 2023】TransformerLight:一种基于时序建模的门控Transformer交通信号控制机制

TransformerLight

10. Optimizing Traffic Control with Model-Based Learning: A Pessimistic Approach to Data-Efficient Policy Inference

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599459

代码https://github.com/siddarth-c/KDD23-ADAC

作者:Mayuresh Kunjir (Amazon Web Services), Sanjay Chawla (Qatar Computing Research Institute, Hamad Bin Khalifa University), Siddarth Chandrasekar (Indian Institute of Technology Madras), Devika Jay (Indian Institute of Technology Madras), Balaraman Ravindran (Indian Institute of Technology Madras)

关键词:信控优化,离线强化学习

11. Mitigating Action Hysteresis in Traffic Signal Control with Traffic Predictive Reinforcement Learning

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599528

作者:Xiao Han (City University of Hong Kong), Xiangyu Zhao (City University of Hong Kong), Liang Zhang (Shenzhen Research Institute of Big Data), Wanyu Wang (City University of Hong Kong)

关键词:信控优化,交通状态预测

KDD 2023| 通过交通预测减轻交通信号控制中的动作滞后问题

PRLight

12. Spatial Heterophily Aware Graph Neural Networks

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599510

代码https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/SHGNN

作者:Congxi Xiao (University of Science and Technology of China; Baidu Research), Jingbo Zhou (Baidu Research), Jizhou Huang (Baidu Inc.), Tong Xu (University of Science and Technology of China; State Key Laboratory of Cognitive Intelligence), Hui Xiong (The Hong Kong University of Science and Technology (Guangzhou); The Hong Kong University of Science and Technology)

关键词:空间异质性、时空预测

SHGNN

Urban Data II

13. LightPath: Lightweight and Scalable Path Representation Learning

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599415

作者:Sean Bin Yang (Aalborg University), Jilin Hu (East China Normal University), Chenjuan Guo (East China Normal University), Bin Yang (East China Normal University), Christian Jensen (Aalborg University)

关键词:轨迹表示学习,自监督学习,轻量化

LightPath

14. Urban Region Representation Learning with OpenStreetMap Building Footprints

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599538

作者:Yi Li (Nanyang Technological University), Weiming Huang (Nanyang Technological University), Gao Cong (Nanyang Technological University), Hao Wang (Nanyang Technological University), Zheng Wang (Nanyang Technological University)

关键词:表示学习,对比学习,OpenStreetMap,城市区域,地理数据挖掘

RegionDCL

15. Multi-Temporal Relationship Inference in Urban Areas

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599440

作者:Shuangli Li (University of Science and Technology of China; Baidu Research), Jingbo Zhou (Baidu Research), Ji Liu (Baidu Research), Tong Xu (University of Science and Technology of China; State Key Laboratory of Cognitive Intelligenc), Enhong Chen (University of Science and Technology of China; State Key Laboratory of Cognitive Intelligence), Hui Xiong (The Hong Kong University of Science and Technology (Guangzhou); The Hong Kong University of Science and Technology)

关键词:关系推断,空间图

SEENet

16. A Study of Situational Reasoning for Traffic Understanding

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599246

作者:Jiarui Zhang (USC/ISI), Filip Ilievski (USC/ISI), Kaixin Ma (CMU), Aravinda Kollaa (USC/ISI), Jonathan Francis (Bosch), Alessandro Oltramari (Bosch)

关键词:问答模型、交通知识理解

17. Frigate: Frugal Spatio-temporal Forecasting on Road Networks

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599357

代码https://github.com/idea-iitd/Frigate

作者:Mridul Gupta (Indian Institute of Technology Delhi), Hariprasad Kodamana (Indian Institute of Technology Delhi), Sayan Ranu (Indian Institute of Technology Delhi)

关键词:交通预测

一种用于道路网络的节俭时空预测模型

KDD 2023 | FRIGATE 路网上的简单时空预测

Frigate

其他

18. Graph Neural Processes for Spatio-Temporal Extrapolation

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599372

代码https://github.com/hjf1997/STGNP

作者:Junfeng Hu (National University of Singapore), Yuxuan Liang (Hong Kong University of Science and Technology (Guangzhou)), Zhencheng Fan (University of Technology Sydney), Hongyang Chen (Zhejiang Lab), Yu Zheng (JD Intelligent Cities Research; JD iCity, JD Technology), Roger Zimmermann (National University of Singapore)

关键词:不确定性量化、神经过程、时空外推

KDD 2023 | 用于时空推断的图神经过程

STGNP

19. Deep Bayesian Active Learning for Accelerating Stochastic Simulation

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599300

代码https://github.com/Rose-STL-Lab/Interactive-Neural-Process

作者:Dongxia Wu (University of California, San Diego), Ruijia Niu (University of California, San Diego), Matteo Chinazzi (Northeastern University), Alessandro Vespignani (Northeastern University), Yi-An Ma (University of California, San Diego), Rose Yu (University of California, San Diego)

关键词:不确定性量化、神经过程,贝叶斯主动学习

INP

20. Generative Causal Interpretation Model for Spatio-Temporal Representation Learning

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599363

代码https://github.com/EternityZY/GCIM

作者:Yu Zhao (Beihang University), Pan Deng (Beihang University), Junting Liu (Beihang University), Xiaofeng Jia (Beijing Big Data Centre), Jianwei Zhang (Capinfo Company Limited)

关键词:生成因果模型、时空表示学习

GCIM

21. MM-DAG: Multi-task DAG Learning for Multi-Modal Data with Application for Traffic Congestion Analysis

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599436

代码https://github.com/Lantian72/MM-DAG

作者:Tian Lan (Tsinghua University), Ziyue Li (University of Cologne), zhishuai Li (SenseTime Research), Lei Bai (Shanghai AI Laboratory), Man Li (The Hong Kong University of Science and Technology), Fugee Tsung (The Hong Kong University of Science and Technology (Guangzhou)), Wolfgang Ketter (University of Cologne), Rui Zhao (SenseTime Research), Chen Zhang (Tsinghua University)

关键词:因果学习、交通拥堵,有向无环图,多任务学习,多模态数据

22.Transferable Graph Structure Learning for Graph-Based Traffic Forecasting Across Cities

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599529

作者:Yilun Jin (Hong Kong University of Science and Technology), Kai Chen (Hong Kong University of Science and Technology), Qiang Yang (Hong Kong University of Science and Technology; WeBank)

关键词:迁移学习,交通预测

TransGTR

如果觉得有帮助还请分享,在看,点赞

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-04-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 时空探索之旅 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Spatiotemporal Data
    • 1. Maintaining the Status Quo: Capturing Invariant Relations for OOD Spatiotemporal Learning
    • 2. Generalizable Low-Resource Activity Recognition with Diverse and Discriminative Representation Learning
    • 3. Localised Adaptive Spatial-Temporal Graph Neural Network
    • 4. Spatio-Temporal Diffusion Point Processes
    • 5. ST-iFGSM: Enhancing Robustness of Human Mobility Signature Identification Model via Spatial-Temporal Iterative FGSM
    • 6. On Hierarchical Disentanglement of Interactive Behaviors for Multimodal Spatiotemporal Data with Incompleteness
  • Urban Data I
    • 7. Robust Spatiotemporal Traffic Forecasting with Reinforced Dynamic Adversarial Training
    • 8. Pattern Expansion and Consolidation on Evolving Graphs for Continual Traffic Prediction
    • 9. TransformerLight: A Novel Sequence Modeling Based Traffic Signaling Mechanism via Gated Transformer
    • 10. Optimizing Traffic Control with Model-Based Learning: A Pessimistic Approach to Data-Efficient Policy Inference
    • 11. Mitigating Action Hysteresis in Traffic Signal Control with Traffic Predictive Reinforcement Learning
    • 12. Spatial Heterophily Aware Graph Neural Networks
  • Urban Data II
    • 13. LightPath: Lightweight and Scalable Path Representation Learning
    • 14. Urban Region Representation Learning with OpenStreetMap Building Footprints
    • 15. Multi-Temporal Relationship Inference in Urban Areas
    • 16. A Study of Situational Reasoning for Traffic Understanding
    • 17. Frigate: Frugal Spatio-temporal Forecasting on Road Networks
  • 其他
    • 18. Graph Neural Processes for Spatio-Temporal Extrapolation
    • 19. Deep Bayesian Active Learning for Accelerating Stochastic Simulation
    • 20. Generative Causal Interpretation Model for Spatio-Temporal Representation Learning
    • 21. MM-DAG: Multi-task DAG Learning for Multi-Modal Data with Application for Traffic Congestion Analysis
    • 22.Transferable Graph Structure Learning for Graph-Based Traffic Forecasting Across Cities
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档