液相色谱-质谱串联(LC-MS/MS)是一种高效且灵敏的分析技术,广泛应用于多个领域中的化合物检测、鉴定和定量。在残留化合物检测方面,LC-MS/MS能够精确识别并测定环境样品、农产品和工业产品中残留的微量化学物质,如农药、兽药和化学品等。在有机小分子检测领域,该技术凭借其高分辨率和强选择性的特性,能够有效分离和检测复杂样品中的有机小分子,为化学研究、药物开发和环境监测等领域提供有力支持。
此外,LC-MS/MS在污染物鉴定和定量方面展现出显著优势,能够准确识别并量化环境污染物,如重金属、持久性有机污染物等,对环境保护和污染治理具有重要意义。在医药和食品领域,LC-MS/MS被广泛应用于添加剂检测和生物小分子分析。它可以帮助监测药品中的杂质、辅料和代谢产物,确保药品的安全性和有效性。同时,该技术还可以用于食品中添加剂、营养成分和生物活性物质的检测,为食品安全监管和营养健康评估提供科学依据。
LC-MS/MS一般包含五个步骤:
在提取样品中的蛋白质后,为了进行后续的质谱分析或其他蛋白质组学研究,通常会对这些蛋白质进行酶切处理。此过程中,常用的蛋白酶是胰蛋白酶(Trypsin),它能够特异性地切割蛋白质中的肽键,从而生成较小的肽段。一般来说,经过胰蛋白酶酶切处理后的肽段长度在35个氨基酸(AA)以内,这样的肽段大小适合用于质谱仪进行分析。通过酶切处理,可以将复杂的蛋白质样品转化为更易于分析和鉴定的肽段混合物。
液相色谱包括固定相和流动相的一类分离技术,以液体作为流动相,固定相可以是多种类型也可以是液体也可以是固体等。Figure3 固定相是3A中圆孔材料,流动相是两类液体,液体A可将肽段插入到固定相中。在不断增加液体B的浓度后,肽段可以及液体B的浓度大小呈现梯度整齐分布,最后计算肽段在液相过程的保留时间(Retention time, RT),该指标反应肽段的疏水作用,时间越长疏水效果越强。
质谱仪的构成简要图(Figure 4)
质谱仪元件
离子源 Ion Sources make ions from sample molecules.
质量分析器Mass analyzers separate ions based on their mass-to-charge ratio (m/z)
信号检测器[Ion Detector registers the number of ions at each m/z value.]**
质谱图谱示意图(Figure5)图解:
数据采集模式
非靶向质谱数据采集模式:Full-scan(全扫描)、DDA(数据依赖采集)和DIA(数据非依赖采集)。
由于DIA是一次性放了一堆母离子进来,同时碎裂,所以对于DIA来说,不是一张谱图对应一个母离子,而是一堆谱图对应一堆来自多个母离子的碎片离子混合物。因此,我们不可能通过对二级谱图的解析来得到一个一个的母离子。 那我们应该如何解析呢?我们用DIA二级谱图与平行实验中的DDA的二级谱图进行比对,从中抽取出相同的二级信号,拿这些数据来进行DIA数据的定性以及相应的定量,而这个定量就是依赖于MS2的信号强度。
Targeted是靶向质谱数据采集
质谱的原始图谱格式通常有:
质谱打分比对软件
图谱识别可通过De novo和Database Search两种方式实现.
搜库策略:软件根据设定理论参数对蛋白数据库模拟实验过程进行理论酶切,接着理论肽段又会生成理论图谱,最后将实验得到的图谱也就是质谱的图谱和数据库模拟出的理论图谱进行比较,最终鉴定和定量蛋白质。(Figure7)
搜库步骤
搜索引擎会对数据库里所有的蛋白序列进行理论酶切,得到肽段序列,再对肽段序列进行理论碎裂,形成理论谱图。 然后,用每一张导入搜索引擎的实验谱图与落入母离子质量误差窗口内的理论谱图进行匹配打分,并选择打分最好的理论谱图对应的肽段作为该实验谱图的鉴定结果。
搜库质控:实验图谱和理论图谱匹配不一定正确,一般需要设置p value等评估匹配结果的指标阈值
错误匹配原因: 蛋白质序列库不完整或者存在测序错误; 未知修饰,导致谱图难以被正确鉴定; 酶切实验的偏差,比如错切、漏切等; 母离子或子离子质量偏差; 搜索引擎的打分无法区分谱图对应的正确肽段和错误肽段,因此需要评价肽段鉴定的可靠性,搜索引擎才能根据鉴定到的可信肽段序列进行蛋白质推断。
在获取质谱图谱数据后,为了进行蛋白质的定性和定量鉴定,我们通常会使用带有搜库引擎的软件进行数据处理。然而,从仪器中心获得的原始质谱数据通常是Thermo RAW格式的二进制加密文件,这种格式在一般的搜库软件中是无法直接识别的。
为了解决这个问题,我们需要使用特定的工具,如Thermo Raw File Parser或MSconvert,将RAW格式的加密文件转换为搜库软件能够识别的文件格式。这些转换工具能够将原始数据转换为通用的开放格式,如mzML或mzXML,以便后续的分析和鉴定。
值得一提的是,FAIMS(Field Asymmetric Ion Mobility Spectrometry)技术在这个过程中起到了重要的作用。FAIMS技术相当于在现有的质谱图谱分级基础上,对肽段进行了再一次的分级。通过FAIMS技术,我们可以根据肽段的电迁移率差异,在电场中对其进行分离,从而进一步提高质谱数据的分辨率和信噪比。这种技术有助于我们在复杂的样品中更准确地鉴定和定量蛋白质。
PS:在获取图谱过程中,常会用到2018年才推出的FAIMS(High-Field Asymmetric Waveform Ion Mobility Spectrometry)技术以用于加载不同电压(肽段在ESI离子化后,进入质谱之前实现快速气相分离,提高分离的峰容量),直接使用多电压下的raw data做MaxQuant定量分析是错误的,MaxQuant软件只能识别单电压的raw data,因此需要使用FAIMS MzXML Generator 软件将raw data转换成各自电压下的MzXML文件。
格式转换软件
搜库软件:
结果评估:
createReport(txt_folder)
;关于蛋白质数据库的选择与构建,可以归纳为以下几点:
下面部分是原始质谱数据定性和定量蛋白质过程:
MaxQuant是一款强大的蛋白质组学数据分析软件,它能够完成蛋白质的定性和定量分析。当MaxQuant完成分析后,会生成一个名为“combined”的目录。在这个目录下,有一个名为“txt”的子目录,其中包含了多个文本文件。特别地,proteinGroups.txt
文件就是蛋白质结果文件,它包含了所有经过MaxQuant分析后得到的蛋白质组信息。这个文件是蛋白质组学研究中非常重要的输出之一,可以用于后续的生物学解释和数据分析。
非常感谢张同学在他的seminar中分享的PPT内容。本文中的许多图片和知识点都源自于他的精彩展示,这对我来说非常有帮助。我再次向张同学表示衷心的感谢。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。