TOC
a^{2}
$$a^{2}$$a_{2}
$$a_{2}$$\times
$$\times$$\div
$$\div$$\pm
$$\pm$$\sqrt{x}
$$\sqrt{x}$$\sqrt[n]{x}
$$\sqrt[n]{x}$$\min \limits_{x_{0}}
$$\min \limits_{x_{0}}$$\min \limits^{x_{0}}
$$\min \limits^{x_{0}}$$\min \limits^{x_{0}}_{x_{1}}
$$\min \limits^{x_{0}}_{x_{1}}$$\max \limits_{x_{0}}
$$\max \limits_{x_{0}}$$\vec{a}
$$\vec{a}$$\vec{a} \cdot \vec{b}
$$\vec{a} \cdot \vec{b}$$\overrightarrow{AB}
$$\overrightarrow{AB}$$\int x^2 {\rm d}x
$$\int x^2 {\rm d}x$$\int_0^2 x^2 {\rm d}x
$$\int_0^2 x^2 {\rm d}x$$\iint \limits_d {f(x,y)} {\rm d}x{\rm d}y
$$\iint \limits_{d} f(x,y){\rm d}x{\rm d}y$$\iiint \limits_v f(x,y,z){\rm d}x{\rm d}y{\rm d}z
$$\iiint \limits_{v} f(x,y,z){\rm d}x{\rm d}y{\rm d}z$$\lim \limits_{n \rightarrow \infty} \frac{1}{n(n+1)}
$$\lim \limits_{n \rightarrow \infty} \frac{1}{n(n+1)}$$\lim \limits_{x \rightarrow 0} \frac{sin x}{x}
$$\lim \limits_{x \rightarrow 0} \frac{sinx}{x}$$\sum_{i=1}^{n} {x_{i}}
$$\sum_{i=1}^{n}{x_{i}}$$\sum \limits_{i=1}^{n} {x_{i}}
$$\sum \limits_{i=1}^{n}{x_{i}}$$\sum_{i=1}^n \frac{1}{i^2}
$$\sum_{i=1}^{n} \frac{1}{i^2}$$\sum \limits_{i=1}^{n} \frac{1}{i^2}
$$\sum \limits_{i=1}^{n} \frac{1}{i^2}$$\prod_{i=0}^n \frac{1}{i^2}
$$\prod_{i=0}^{n} \frac{1}{i^2}$$\prod \limits_{i=0}^{n} \frac{1}{i^2}
$$\prod \limits_{i=0}^{n} \frac{1}{i^2}$$\{\}
$$\{\}$$a\choose b
$$a\choose b$$\frac{x}{y}
$$\frac{x}{y}$$\left () \right.
$$\left () \right.$$\ldots
$$\ldots$$\cdots
$$\cdots$$\vdots
$$\vdots$$\ddots
$$\ddots$$\mid
$$\mid$$\backslash
$$\backslash$$\ast
$$\ast$$\leq
$$\leq$$\geq
$$\geq$$\neq
$$\neq$$\approx
$$\apporx$$\equiv
$$\equiv$$\sum
$$\sum$$\prod
$$\prod$$\coprod
$$\coprod$$\bigodot
$$\bigodot$$\bigotimes
$$\bigotimes$$\bigoplus
$$\bigoplus$$\%
$$\%$$\lceil
$$\lceil$$\rceil
$$\rceil$$\lfloor
$$\lfloor$$\rfloor
$$\rfloor$$\lceil \frac{4}{5} \rceil
$$\lceil frac{4}{5} \rceil$$\lfloor \frac{4}{5} \rfloor
$$\lfloor frac{4}{5} \rfloor$$希腊字母 | 公式 | 希腊字母 | 公式 |
|---|---|---|---|
\alpha | \alpha | \beta | \beta |
\gamma | \gamma | \Gamma | \Gamma |
\delta | \delta | \Delta | \Delta |
\epsilon | \epsilon | \varepsilon | \varepsilon |
\zeta | \zeta | \eta | \eta |
\theta | \theta | \Theta | \Theta |
\vartheta | \vartheta | \iota | \iota |
\kappa | \kappa | \lambda | \lambda |
\Lambda | \Lambda | \mu | \mu |
\nu | \nu | \xi | \xi |
\Xi | \Xi | \pi | \pi |
\rho | \rho | \varrho | \varrho |
\sigma | \sigma | \Sigma | \Sigma |
\varsigma | \varsigma | \tau | \tua |
\upsilon | \upsilon | \Upsilon | \Upsilon |
\phi | \phi | \Phi | \Phi |
\varphi | \varphi | \chi | \chi |
\psi | \psi | \Psi | \Psi |
\Omega | \Omega | \omega | \omega |
\emptyset
$$\emptyset$$\in
$$\in$$\notin
$$\notin$$\subset
$$\subset$$\supset
$$\supset$$\subseteq
$$\subseteq$$\supseteq
$$\supseteq$$\bigcap
$$\bigcap$$\bigcup
$$\bigcup$$\bigvee
$$\bigvee$$\bigwedge
$$\bigwedge$$\biguplus
$$\biguplus$$\bigsqcup
$$\bigsqcup$$A\\2
$$A\\2$$\log
$$\log$$\lg
`$$\lg$$`\ln
$$\ln$$A_{3}^{4}
$$A_{3}^{4}$$C_{4}^2
$$C_{4}^2$$\uparrow
$$\uparrow$$\downarrow
$$\downarrow$$\Uparrow
$$\Uparrow$$ \Downarrow
$$\Downarrow$$\leftarrow
$$\leftarrow$$\rightarrow
$$\rightarrow$$\Leftarrow
$$\Leftarrow$$\Rightarrow
$$\Rightarrow$$\longrightarrow
$$\longrightarrow$$\longleftarrow
$$\longleftarrow$$\Longleftarrow
$$Longleftarrow$$\Longrightarrow
$$\Longrightarrow$$\stackrel{+}{\Rightarrow}
$$\stackrel{+}{\Rightarrow}$$\stackrel{*}{\Rightarrow}
$$\stackrel{*}{\Rightarrow}$$\overleftarrow{左箭头}
$$\overlfetarrow{左箭头}$$\overrightarrow{右箭头}
$$\overrightarrow{右箭头}$$\underleftarrow{左箭头}
$$\underleftarrow{左箭头}$$\underrightarrow{右箭头}
$$\underrightarrow{右箭头}$$\bot
$$\bot$$\angle
$$angle$$30^\circ
$$30^\circ$$\sin
$$\sin$$\cos
$$\cos$$\tan
$$\tan$$\cot
$$\cot$$\sec
$$\sec$$\csc
$$\csc$$F(x, f(x)) = \begin{cases}1, y != f(x) \\0, y=f(x) \\-1, y=\infty \end{cases}
$$F(x, f(x)) = \begin{cases}1, y!=f(x) \\ 0, y=f(x) \\ -1, y=\infty \end {cases}$$$M_{p} = \begin{cases} x_{[np] + 1} {\quad np不是整数} \\ \frac{1}{2}(x_{(np)} + x_{(np + 1)}) {\quad np是整数}\end {cases}
$$M_{p} = \begin{cases} x_{[np] + 1} {\quad np不是整数} \\ \frac{1}{2}(x_{(np)} + x_{(np + 1)}) {\quad np是整数} \end {cases}$$\begin {matrix} 1& 2 & 3 \\ 4& 5& 6 \\ 7 & 8 & 9\end{matrix}
$$\begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix}$$\left( \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix}\right)
$$\left(\begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} \right)$$\left[ \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9\end{matrix}\right]
$$\left[\begin{matrix} 1&2&3 \\ 4&5&6 7&8&9\end{matrix} \right]$$\left\{\begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9\end{matrix}\right\}
$$\left\{\begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9\end{matrix}\right\}$$\begin{array}{c|ccc} {\downarrow}&{a}&{b}&{c} \\ \hline {A_{1}}&{1}&{2}&{3} \\ A_{2} &{4}&{5}&{6} \end{array}
$$\begin{array}{c|ccc} {\downarrow}&{a}&{b}&{c} \\ \hline {A_{1}}&{1}&{2}&{3} \\ {A_{2}}&{4}&{5}&{6} \end{array}$$原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。