前言 本篇博客就来探讨一下动态内存,说到内存,我们以前开辟空间大小都是固定的,不能调整这个空间大小,于是就有动态内存,可以让我们自己选择开辟多少空间,更加方便,让我们一起来看看动态内存的有关知识吧 个人主页:小张同学zkf 若有问题 评论区见 感兴趣就关注一下吧
首先我们要搞清楚什么是动态内存的分配?

平常我们定义的数组,都是在栈区分配的空间,都是分配的空间都是固定的大小
这种分配固定大小的内存分配方法称之为静态内存分配
与静态内存相对的,就是可以控制内存的分配的动态内存分配
注意:这里动态内存分配的空间是在堆区申请的,不是在栈区申请的
我们再来看看内存各个空间都是什么

1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内
存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。
2. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配方式类似于链表。
3. 数据段(静态区):(static)存放全局变量、静态数据。程序结束后由系统释放。
4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。
我们来了解下动态内存的函数,对了以下所有函数的头文件都是<stdlib.h>
C语言提供了一个动态内存开辟的函数:
void * malloc ( size_t size);
这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。
注意:
• 如果开辟成功,则返回一个指向开辟好空间的指针。 • 如果开辟失败,则返回一个 NULL 指针,因此malloc的返回值一定要做检查。 • 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。 • 如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器
C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的,函数原型如下:
void free ( void * ptr);
free函数用来释放动态开辟的内存。
• 如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
• 如果参数 ptr 是NULL指针,则函数什么事都不做。

#include <stdio.h>
#include <stdlib.h>
int main()
{
int num = 0;
scanf("%d", &num);
int arr[num] = {0};
int* ptr = NULL;
ptr = (int*)malloc(num*sizeof(int));
if(NULL != ptr)//判断ptr指针是否为空
{
int i = 0;
for(i=0; i<num; i++)
{
*(ptr+i) = 0;
}
}
free(ptr);//释放ptr所指向的动态内存
ptr = NULL;//是否有必要?
return 0;
}看这个例子就是典型的动态内存的开辟和回收,malloc开辟空间,然后判断一下是不是开辟空间失败,若失败返回空指针,当动态内存你使用完毕之后,用free释放,释放后的指针是野指针,记得置空。
C语言还提供了一个函数叫 calloc , calloc 函数也用来动态内存分配。原型如下:
void * calloc ( size_t num, size_t size);
• 函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为 0 。
• 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全 0 。

#include <stdio.h>
#include <stdlib.h>
int main()
{
int *p = (int*)calloc(10, sizeof(int));
if(NULL != p)
{
int i = 0;
for(i=0; i<10; i++)
{
printf("%d ", *(p+i));
}
}
free(p);
p = NULL;
return 0;
}输出结果:
0 0 0 0 0 0 0 0 0 0
所以如果我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。
• realloc函数的出现让动态内存管理更加灵活。
• 有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的使用内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。
函数原型如下:
void * realloc ( void * ptr, size_t size);
• ptr 是要调整的内存地址
• size 调整之后新大小
• 返回值为调整之后的内存起始位置。
• 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间。
• realloc在调整内存空间的是存在两种情况:
◦ 情况1:原有空间之后有足够大的空间
◦ 情况2:原有空间之后没有足够大的空间

情况1
当是情况1的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。
情况2
当是情况2的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。
由于上述的两种情况,realloc函数的使用就要注意一些:

#include <stdio.h>
#include <stdlib.h>
int main()
{
int *ptr = (int*)malloc(100);
if(ptr != NULL)
{
//业务处理
}
else
{
return 1;
}
//扩展容量
//代码1 - 直接将realloc的返回值放到ptr中
ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)
//代码2 - 先将realloc函数的返回值放在p中,不为NULL,在放ptr中
int*p = NULL;
p = realloc(ptr, 1000);
if(p != NULL)
{
ptr = p;
}
//业务处理
free(ptr);
return 0;
}realloc在vs上,是情况2的情况,自动释放旧的动态空间,在新的动态空间里开辟更大的空间,自动把就空间的数据拷贝一份到新空间,返回新空间的初始指针,所以不用再用free释放旧空间,只需释放realloc开批的新空间,记住realloc开辟的新空间也有可能开辟失败,若开辟失败,返回空指针。
void test () { int *p = ( int *) malloc (INT_MAX/ 4 ); *p = 20 ; // 如果 p 的值是 NULL ,就会有问题 free (p); }
看这个代码,这个动态内存开辟的空间没有判断p是不是空指针,有可能内存开辟失败返回空指针,若对空指针解引用,就会非法访问出错。
void test () { int i = 0 ; int *p = ( int *) malloc ( 10 * sizeof ( int )); if ( NULL == p) { exit (EXIT_FAILURE); } for (i= 0 ; i<= 10 ; i++) { *(p+i) = i; // 当 i 是 10 的时候越界访问 } free (p); }
仔细看这个i,当它等于10时,已经不算动态内存的开辟访问的空间范围内,是越界访问,
void test () { int a = 10 ; int *p = &a; free (p); //ok? }
这个free只能对动态内存的空间释放,注意这一点
void test () { int *p = ( int *) malloc ( 100 ); p++; free (p); //p 不再指向动态内存的起始位置 }
这个p指针发生改变,不在指向动态内存的起始位置,释放时只释放p现在指向的位置空间,所以只释放一部分,另一部分没释放,造成内存泄漏
void test () { int *p = ( int *) malloc ( 100 ); free (p); free (p); // 重复释放 }
一个动态内存的开辟只能释放一次,不能多次释放
void test () { int *p = ( int *) malloc ( 100 ); if ( NULL != p) { *p = 20 ; } } int main () { test(); while ( 1 ); }
这个test函数返回时,函数空间释放,所以找不到动态内存的的地址了,但动态内存空间还没释放,并且也释放不了,就成为内存泄露的问题
忘记释放不再使用的动态开辟的空间会造成内存泄漏。
切记:动态开辟的空间一定要释放,并且正确释放。
void GetMemory ( char *p) { p = ( char *) malloc ( 100 ); } void Test ( void ) { char *str = NULL ; GetMemory(str); strcpy (str, "hello world" ); printf (str); }
当这个GetMemory函数返回时,函数空间释放,访问不到动态内存的空间了。但动态内存没释放,形成内存泄漏,由于形参是实参的临时拷贝,不影响str依旧是空指针,对空指针访问,程序崩溃
char * GetMemory ( void ) { char p[] = "hello world" ; return p; } void Test ( void ) { char *str = NULL ; str = GetMemory(); printf (str); }
首先注意这个GetMemory函数里是栈空间的变量数组,随着函数的释放,这个变量的空间也会释放,你虽然返回了数组首元素的地址,但是这个空间已经交还给系统,无权访问了,是野指针,所以我不确定到底能不能再次访问到这个数组,有可能还没有被系统把这个空间覆盖成其他内容,有可能访问到
void GetMemory ( char **p, int num) { *p = ( char *) malloc (num); } void Test ( void ) { char *str = NULL ; GetMemory(&str, 100 ); strcpy (str, "hello" ); printf (str); }
这个是传str地址过去,是传址调用,那就用二级指针的形参接收,对二级指针解引用,将动态内存的首地址通过传址调用,让str接收到,所以此刻虽函数空间释放了,但我的动态内存的首地址拿到了,所以此刻这个str不是空指针了,可以strcpy,但可惜这个代码最终忘记释放str了,只有这一个小问题
void Test ( void ) { char *str = ( char *) malloc ( 100 ); strcpy (str, "hello" ); free (str); if (str != NULL ) { strcpy (str, "world" ); printf (str); } }
提早释放动态内存,但是只是对这个动态内存的空间没有访问的权限了,地址还是在的,通过strcpy,访问了动态内存的空间,这就是非法访问了,也就是说在没释放前,hello被拷贝过去,释放后,world无法拷贝过去

也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。
C99 中,结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。
例如:
struct st_type { int i; int a[ 0 ]; // 柔性数组 成员 };
有些编译器会报错无法编译可以改成:
struct st_type { int i; int a[]; // 柔性数组成员 };
• 结构中的柔性数组成员前面必须至少一个其他成员。
• sizeof 返回的这种结构大小不包括柔性数组的内存。
• 包含柔性数组成员的结构用malloc()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。
typedef struct st_type { int i; int a[ 0 ]; // 柔性数组成员 }type_a; int main () { printf ( "%d\n" , sizeof (type_a)); // 输出的是 4 return 0 ; }
// 代码 1 # include <stdio.h> # include <stdlib.h> int main () { int i = 0 ; type_a *p = (type_a*) malloc ( sizeof (type_a)+ 100 * sizeof ( int )); // 业务处理 p->i = 100 ; for (i= 0 ; i< 100 ; i++) { p->a[i] = i; } free (p); return 0 ; }
这样柔性数组成员a,相当于获得了100个整型元素的连续空间。

上述的 type_a 结构也可以设计为下面的结构,也能完成同样的效果
// 代码 2 # include <stdio.h> # include <stdlib.h> typedef struct st_type { int i; int *p_a; }type_a; int main () { type_a *p = (type_a *) malloc ( sizeof (type_a)); p->i = 100 ; p->p_a = ( int *) malloc (p->i* sizeof ( int )); // 业务处理 for (i= 0 ; i< 100 ; i++) { p->p_a[i] = i; } // 释放空间 free (p->p_a); p->p_a = NULL ; free (p); p = NULL ; return 0 ; }
上述代码 1 和代码 2 可以完成同样的功能,但是方法 1 的实现有两个好处:
第一个好处是:方便内存释放
如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。
第二个好处是:这样有利于访问速度.
连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)
结束语 动态内存的存储算是总结完了,动态内存我个人感觉也算是比较难,有点绕,可以多来回看看这篇博客,有什么问题跟我讨论,下一篇博客见 OK感谢观看!!