首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >深谈树形背包(有依赖的背包)

深谈树形背包(有依赖的背包)

作者头像
摆烂小白敲代码
发布2024-09-23 16:40:45
发布2024-09-23 16:40:45
3370
举报
文章被收录于专栏:学习学习

树形背包也叫有依赖的背包,是一种背包问题的变体,与传统的背包问题不同的是,物品之间存在一定的层次结构,形成了一棵树。每个节点代表一个物品,节点之间通过边连接,表示层次关系。问题的目标是在遍历这棵树的过程中,选择一些物品放入背包,使得背包中物品的总价值最大。 在树形背包问题中,一个节点可以选择放入背包,也可以选择不放入背包。如果选择放入,就需要考虑该节点的子节点;如果选择不放入,可以考虑其他兄弟节点。问题的关键是如何在遍历树的过程中,动态规划地计算每个节点的状态。

这个树形结构选择才出现了有依赖,选这个物品,就要确保它的所有结点都被选择了,才能选择它,有点类似于数据结构中的拓扑序列,只有前面的都做完了才能选择做它,做它是有前提的,比如:学习数据结构是不是先要学习C/C++,C/C++是数据结构的先导课程。


这里用acwing上的例题:10. 有依赖的背包问题 - AcWing题库

话不多少直接上代码,注释在代码上。

代码语言:javascript
复制
#include<iostream>
using namespace std;
int N,V,p,root;//N个物品V背包容量
int v[105],w[105];
int a[105][105],b[105],f[105][105];
//a[i][j]表示以i为头结点有j个子节点,a[i][j]则存的是下标,b[i]表示以i为根结点有b[i]个子节点
//f[i][j]表示以i为根节点,背包容量为j所获得的最大价值
void dfs(int t){//有树就要考虑遍历用dfs深搜,t表示此时父节点
//此时t为父节点,要想选下面的,前提就是把父节点选了,所以初始背包容量大于v[t]都初始化w[t]
    for(int i=v[t];i<=V;i++){
        f[t][i]=w[t];
    }
//下面不是一个父节点有许多子节点,按个遍历初始化它们,那么身为子节点又是父节点,又有子节点,递归下去
    for(int i=0;i<b[t];i++){
        int s=a[t][i];
        dfs(s);
        for(int j=V;j>=v[t];j--){//类似01背包逆序遍历
            for(int k=0;k<=j-v[t];k++){
                f[t][j]=max(f[t][j],f[t][j-k]+f[s][k]);//状态转移方程
                //f[t][j-k]+f[s][k]表示父节点要j-k的容量,子节点要k的容量
            }
        }
    }
}
int main(){
    cin>>N>>V;
    for(int i=1;i<=N;i++){
        cin>>v[i]>>w[i]>>p;
        if(p==-1){//-1表示为根节点
            root=i;
        }else{
            a[p][b[p]++]=i;//可以看一下上面a[i][j]与b[i]的含义
        }
    }
    dfs(root);
    cout<<f[root][V]<<endl;
    return 0;
}

这里解释一下主要思想:要选一个物品,必须选它的父节点物品给他父结点保留v[t]的背包容量即可,剩下的V-v[t]给它的子节点,子节点又是父节点,它又有子节点,继续递归下去,max去寻找最大价值。

这篇博客特别鸣谢B站up主董晓老师,为我提供思路和一些资源,侵权必删,这里特别特别推荐去看一下董晓老师讲解的视频。看文章看不懂的可以看一下:E18 树形DP 树形背包_哔哩哔哩_bilibili

真的讲的特别好,细节方面说的也比文章中的多。本人水平有限一些地方写的不是很好,都是按照自己的思路写的,或许跟大家有所不同,鼓励大家提出疑问,探讨更好的思路解法,感谢大家支持。下篇更新求方案数问题。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-01-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档