
pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍CV计算机视觉的第七篇,零样本图像分类(zero-shot-image-classification),在huggingface库内有500个零样本图像分类模型。
零样本图像分类是指模型对以前未见过的图片类别进行分类的任务,它要求模型能够在没有看到特定类别样本的情况下,对这些类别进行分类。这通常通过学习类别之间的语义表示(如从文本描述中学习)来实现,并将图像特征与这些语义表示相匹配。

比较典型的模型是openai发布的clip-vit-base-patch16,曾被应用于Stable Diffusion文生图模型中,用于文本与图片间的信息关联。关于文生图/图生图可参考我之前的文章

str或ModelCard,可选)— 属于此管道模型的模型卡。str,可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。
如果未指定框架,则默认为当前安装的框架。如果未指定框架且安装了两个框架,则默认为 的框架model,如果未提供模型,则默认为 PyTorch。
str,默认为"")— 管道的任务标识符。int,可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。int,可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。int,可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.device或str太str或torch.dtype,可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto")bool,可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。str、List[str]或PIL.Image)List[PIL.Image]——管道处理三种类型的图像: List[str]) — 该图像的候选标签str,可选,默认为)— 与候选标签"This is a photo of {}"结合使用的句子,通过用候选标签替换占位符来尝试图像分类。然后使用 logits_per_image 估计可能性float,默认为 None)— 等待从网络获取图像的最长时间(以秒为单位)。如果为 None,则不设置超时,并且调用可能会永远阻塞。分别采用google/siglip-so400m-patch14-384和openai/clip-vit-base-patch16对以下图片进行分类
图片一:

图片二:

采用pipeline代码如下
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
from transformers import pipeline
classifier = pipeline(model="google/siglip-so400m-patch14-384")
output=classifier(
"./sd-xl.png",
candidate_labels=["animals", "humans", "landscape"],
)
print(output)
classifier = pipeline(model="openai/clip-vit-base-patch16")
output=classifier(
"http://images.cocodataset.org/val2017/000000039769.jpg",
candidate_labels=["black and white", "photorealist", "painting"],
)
print(output)执行后,自动下载模型文件并进行识别:

在huggingface上,我们将零样本图片分类(zero-shot-image-classification)模型按下载量从高到低排序:

本文对transformers之pipeline的零样本图片分类(zero-shot-image-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的零样本图片分类(zero-shot-image-classification)模型。