前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Linux网络设计中的Reactor网络模型与百万级并发实践

Linux网络设计中的Reactor网络模型与百万级并发实践

原创
作者头像
Lion Long
发布2024-08-13 21:44:07
1110
发布2024-08-13 21:44:07
举报
文章被收录于专栏:后端开发技术

一、Reactor网络模型简介

什么是并发:网络并发,通俗的讲就是服务器可以承载的客户端数量,即服务器可以稳定保证客户端同时接入的数量。

Reactor模型开发效率比直接使用IO多路复用要高,它一般是单线程的,设计目标是希望一个线程使用CPU的全部资源;带来的优点是,在每个事件处理中很多时候不需要考虑共享资源的互斥访问。

Reactor模式是处理并发IO比较常见的模式,用于同步IO,核心思想是将所有要处理的IO事件注册到一个中心IO多路复用器上,同时主线程或进程阻塞在IO多路复用器上;一旦有事件到来或准备就绪,多路复用器返回并将事先注册的相应 I/O 事件分发到对应的处理器中。

二、Reactor的优点

1、响应快;不必为单个同步事件阻塞,虽然Reactor本身依然是同步的。 2、编程相对简单;可以最大程度的避免复杂的多线程及同步问题,尽可能的避免多线程、多进程的切换开销。 3、可扩展性;可通过增加Reactor实例个数,充分利用CPU资源。 4、高复用性;Reactor模型本身与事件处理逻辑无关,具有很高的复用性。

三、实现过程

step 1:定义Reactor模型相关结构体

reactor数据结构设计图如下:

图片
图片

结构说明:以fd作为索引,存放在block中;当一个fd到来时,通过fd/MAX先找到fd对应的block号,再通过fd%MAX找到对应的偏移地址。例如来了个fd=10000,每个块存放的最大item数量MAX=1024,那么fd对应的block序号等于10000/1024=9;偏移量等于10000%1024=784。这样就可以找到fd对应的数据存放地址item。

数据结构的代码实现如下:

代码语言:javascript
复制
struct ntyevnt{
   
    int fd;//事件fd
    char buffer[BUFFER_LENGTH];//缓冲区
    int length;//缓存长度
    int status;//状态

    int events;//事件
    void *arg;//callback的参数
    int(*callback)(int fd, int events, void* arg);//回调函数
};
struct eventblock{
   
    struct *sock_items;//事件集合
    struct eventblock *next;//指向下一个内存块
};
struct reactor{
   
    int epfd;//epoll的文件描述符
    int blkcnt;//事件块的数量
    struct eventblock *evtblk;//事件块的起始地址
};

step 2:实现Reactor容器初始化功能

我们这里使用epoll作为IO多路复用器。 思路:初始化reactor内存块,避免脏数据;创建events和block并初始化,将events添加到block中,将block添加到reactor的链表中管理。

代码语言:javascript
复制
int ntyreactor_init(struct ntyreactor *reactor)
{
   
    if (reactor == NULL)
        return -1;
    memset(reactor, 0, sizeof(struct ntyreactor));
    //创建epoll,作为IO多路复用器
    reactor->epfd = epoll_create(1);
    if (reactor->epfd <= 0)
    {
   
        printf("create epfd in %s error %s\n", __func__, strerror(errno));
        return -2;
    }

    // 创建事件集
    struct ntyevnt *events = (struct ntyevnt *)malloc(MAX_EPOLL_EVENTS * sizeof(struct ntyevnt));
    if (events == NULL)
    {
   
        printf("create ntyevnt in %s error %s\n", __func__, strerror(errno));
        close(reactor->epfd);
        return -3;
    }
    memset(events, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));

    //创建事件内存块
    struct eventblock *block = (struct eventblock*)malloc(sizeof(struct eventblock));
    if (block == NULL)
    {
   
        printf("create eventblock in %s error %s\n", __func__, strerror(errno));
        free(events);
        close(reactor->epfd);
        return -4;
    }
    block->events = events;
    block->next = NULL;

    // reactor初始化赋值
    reactor->evblks=block;
    reactor->blkcnt = 1;

    return 0;
}

step 3:实现socket初始化功能

定义成一个函数,方便初始化多个监听端口。

代码语言:javascript
复制
int init_sock(short port)
{
   
    int ret = 0;
    int fd = socket(AF_INET, SOCK_STREAM, 0);//创建套字接
    if (fd == -1)
    {
   
        printf("create socket in %s error %s\n", __func__, strerror(errno));
        return -1;
    }
    ret=fcntl(fd, F_SETFL, O_NONBLOCK);//设置非阻塞
    if (ret == -1)
    {
   
        printf("fcntl O_NONBLOCK in %s error %s\n", __func__, strerror(errno));
        return -1;
    }

    // 设置属性
    struct sockaddr_in server_addr;
    memset(&server_addr, 0, sizeof(server_addr));
    server_addr.sin_family = AF_INET;// IPV4
    server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
    server_addr.sin_port = htons(port);

    // 绑定
    ret = bind(fd, (struct sockaddr*)&server_addr, sizeof(server_addr));
    if (ret == -1)
    {
   
        printf("bind() in %s error %s\n", __func__, strerror(errno));
        return -1;
    }

    //监听
    ret = listen(fd, 20);
    if (ret < 0)
    {
   
        printf("listen failed : %s\n", strerror(errno));
        return -1;
    }

    printf("listen server port : %d\n", port);

    return fd;
}

step 4:实现Reactor动态扩容功能

为了实现高并发,服务器需要监听多个端口。当高并发时需要reactor容器进行扩容管理。 核心思路:找到链表的末端,分别为events和block分配内存并初始化,将events添加到block中,将block添加到reactor的链表中管理。

代码语言:javascript
复制
int ntyreactor_alloc(struct ntyreactor *reactor)
{
   
    if (reactor == NULL)
        return -1;
    if (reactor->evblks == NULL)
        return -1;

    //找到链表末端
    struct eventblock *blk = reactor->evblks;
    while (blk->next != NULL)
        blk = blk->next;

    // 创建事件集
    struct ntyevent *evs = (struct ntyevent*)malloc((MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
    if (evs == NULL)
    {
   
        printf("ntyreactor_alloc ntyevent failed\n");
        return -2;
    }
    memset(evs, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));

    // 创建事件块
    struct eventblock *block = (struct eventblock*)malloc(sizeof(struct eventblock));
    if (block == NULL)
    {
   
        printf("ntyreactor_alloc eventblock failed\n");
        return -3;
    }
    block->events = evs;
    block->next = NULL;

    //实现扩容
    blk->next = block;
    reactor->blkcnt++;

    return 0;
}

step 5:实现Reactor索引功能

思路:通过fd/MAX先找到fd对应的block号,再通过fd%MAX找到对应的偏移地址。 例如来了个fd=10000,每个块存放的最大item数量MAX=1024,那么fd对应的block序号等于10000/1024=9;偏移量等于10000%1024=784。这样就可以找到fd对应的数据存放地址item。

代码语言:javascript
复制
struct ntyevent *ntyreactor_idx(struct ntyreactor *reactor, int sockfd)
{
   
    if (reactor == NULL)
        return NULL;
    if (reactor->evblks == NULL)
        return NULL;
    // fd所在block序号
    int blkidx = sockfd / MAX_EPOLL_EVENTS;
    while (blkidx >= reactor->blkcnt)
    {
   
        // 扩容
        ntyreactor_alloc(reactor);
    }

    //找到fd对应block的位置
    int i = 0;
    struct eventblock *blk = reactor->evblks;
    while (i++ != blkidx && blk != NULL)
    {
   
        blk = blk->next;
    }

    // 返回item 地址
    return &blk->events[sockfd%MAX_EPOLL_EVENTS];
}

step 6:实现设置事件信息功能

将事件的相关信息保存到数据结构中。主要实现填充关键信息到event结构体中。

代码语言:javascript
复制
void nty_event_set(struct ntyevent *ev,int fd,NCALLBACK callback,void *arg)
{
   
    ev->fd = fd;
    ev->events = 0;
    ev->callback = callback;
    ev->arg = arg;
}

step 7:实现IO事件监听功能

这里使用epoll作为IO多路复用器,将事件添加到epoll中监听。 思路:主要是epoll_ctl操作,将事件添加到reactor的event结构体中。

代码语言:javascript
复制
int nty_event_add(int epfd, int events, struct ntyevent *ev)
{
   
    // 设置epoll事件信息
    struct epoll_event ep_ev = {
    0,{
   0} };
    ep_ev.data.ptr = ev;
    ep_ev.events = ev->events = events;

    // 判断,设置epfd的操作模式
    int op;
    if (ev->status == 1)
        op = EPOLL_CTL_MOD;
    else
    {
   
        op = EPOLL_CTL_ADD;
        ev->status = 1;
    }


    // 设置epoll
    int ret = epoll_ctl(epfd, op, ev->fd, &ep_ev);
    if (ret < 0)
    {
   
        printf("event add failed [fd=%d], events[%d],ret:%d\n", ev->fd, events,ret);
        printf("event add failed in %s error %s\n", __func__, strerror(errno));
        return -1;
    }

    return 0;
}

step 8:实现IO事件移除功能

由于设置了非阻塞模式,当事件到来时,需要暂时移除监听,避免干扰。

代码语言:javascript
复制
int nty_event_del(int epfd, struct ntyevent *event)
{
   
    if (event->status != 1)
        return -1;

    struct epoll_event ep_ev = {
    0,{
   0} };
    ep_ev.data.ptr = event;
    event->status = 0;
    // 移除fd的监听
    epoll_ctl(epfd, EPOLL_CTR_DEL, &ep_ev);
    return 0;
}

step 9:实现Reactor事件监听功能

思路:设置fd的事件信息,添加事件到epoll监听。

代码语言:javascript
复制
int ntyreactor_addlistener(struct ntyreactor *reactor,int sockfd,NCALLBACK *acceptor)
{
   
    if (reactor == NULL)
        return -1;
    if (reactor->evblks == NULL)
        return -1;

    // 找到fd对应的event地址
    struct ntyevent *event = ntyreactor_idx(reactor, sockfd);
    if (event == NULL)
        return -1;
    // 设置fd的事件信息
    nty_event_set(event, sockfd, acceptor, reactor);
    // 添加事件到epoll监听
    nty_event_add(reactor->epfd, EPOLLIN, event);

    return 0;
}

step 10:实现recv回调函数

思路:找到fd对应的信息内存块;使用recv接收数据;暂时移除该事件的监听;如果接收成功,设置监听事件为是否可写,添加到IO多路复用器(epoll)中;返回收到的数据长度。

代码语言:javascript
复制
int recv_cb(int fd, int events, void *arg)
{
   
    struct ntyreactor *reactor = (struct ntyreactor *)arg;
    if (reactor == NULL)
        return -1;
    // 找到fd对应的event地址
    struct ntyevent *event = ntyreactor_idx(reactor, fd);
    if (event == NULL)
        return -1;
    // 接收数据
    int len = recv(fd, event->buffer, BUFFER_LENGTH, 0);
    // 暂时移除监听
    nty_event_del(reactor->epfd, event);
    if (len > 0)
    {
   
        event->length = len;
        event->buffer[len] = '\0';
        printf("recv [%d]:%s\n", fd, event->buffer);
        //设置fd的事件信息
        nty_event_set(event, fd, send_cb, reactor);
        // 添加事件到epoll监听
        nty_event_add(reactor->epfd, EPOLLOUT, event);
    }
    else if (len == 0)
    {
   
        nty_event_del(reactor->epfd, event);
        printf("recv_cb --> disconnect\n");
        close(event->fd);
    }
    else {
   

        if (errno == EAGAIN && errno == EWOULDBLOCK) {
    //

        }
        else if (errno == ECONNRESET) {
   
            nty_event_del(reactor->epfd, event);
            close(event->fd);
        }
        printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));

    }
    return len;
}

step 11:实现send回调函数

思路:找到fd对应的信息内存块;使用send发送数据;暂时移除该事件的监听;如果发送成功,设置监听事件为是否可读,添加到IO多路复用器(epoll)中;返回发送的数据长度。

代码语言:javascript
复制
int send_cb(int fd, int events, void *arg)
{
   
    struct ntyreactor *reactor = (struct ntyreactor*)arg;
    if (reactor == NULL)
    {
   
        return -1;
    }

    // 查找fd对应的信息存放内存块
    struct ntyevent *ev = ntyreactor_idx(reactor, fd);
    if (ev == NULL)
        return -1;

    int len = send(fd, ev->buffer, BUFFER_LENGTH, 0);
    // 暂时移除监听
    nty_event_del(reactor->epfd, ev);

    if (len > 0)
    {
   

        printf("send[fd=%d], [%d]%s\n", fd, len, ev->buffer);
        nty_event_set(ev, fd, recv_cb, reactor);
        nty_event_add(reactor->epfd, EPOLLIN, ev);
    }
    else
    {
   
        close(ev->fd);
        printf("send[fd=%d] error %s\n", fd, strerror(errno));
    }
    return len;
}

step 12:实现accept回调函数

思路:使用accept获得连接的客户端fd;设置客户端fd为非阻塞模式;找到fd对应的信息内存块;设置fd的事件信息;设置监听事件为是否可读,添加到IO多路复用器(epoll)中。

代码语言:javascript
复制
int accept_cb(int fd, int events, void *arg)
{
   
    struct ntyreactor *reactor = (struct ntyreactor *)arg;
    if (reactor == NULL)
        return -1;

    struct sockaddr_in client_addr;
    socklen_t len = sizeof(client_addr);

    int client_fd = accept(fd,(struct sockaddr*)&client_addr,&len);
    if (client_fd == -1)
    {
   
        printf("accept: %s\n", strerror(errno));
        return -1;
    }

    int flag = fcntl(client_fd, F_SETFL, O_NONBLOCK);
    if ((flag = fcntl(client_fd, F_SETFL, O_NONBLOCK)) < 0) {
   
        printf("%s: fcntl nonblocking failed, %d\n", __func__, MAX_EPOLL_EVENTS);
        return -1;
    }

    // 找到fd对应的event地址
    struct ntyevent *event = ntyreactor_idx(reactor, client_fd);
    if (event == NULL)
        return -1;
    // 设置fd的事件信息
    nty_event_set(event, client_fd, recv_cb, reactor);
    // 添加事件到epoll监听
    nty_event_add(reactor->epfd, EPOLLIN, event);

    printf("new connect [%s:%d], pos[%d]\n",
        inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port), client_fd);

    return 0;
}

step 13:实现reactor运行函数

主要是epoll的等待功能,将监听到的事件进行回调处理。

代码语言:javascript
复制
int ntyreactor_run(struct ntyreactor *reactor)
{
   
    if (reactor == NULL)
        return -1;
    if (reactor->epfd < 0)
        return -1;
    if (reactor->evblks == NULL)
        return -1;

    struct epoll_event events[MAX_EPOLL_EVENTS + 1];
    int i;
    while (1)
    {
   
        // epoll监听客户端接入
        int nready = epoll_wait(reactor->epfd, events, MAX_EPOLL_EVENTS, 1000);
        if (nready < 0)
        {
   
            printf("epoll wait error\n");
            continue;
        }
        for (i = 0; i < nready; i++)
        {
   
            struct ntyevent *ev = (struct ntyevent *)events[i].data.ptr;
            if ((events[i].events &EPOLLIN) && (ev->events &EPOLLIN))
            {
   
                // 处理可读事件
                ev->callback(ev->fd, events[i].events, ev->arg);
            }
            if ((events[i].events &EPOLLOUT) && (ev->events &EPOLLOUT))
            {
   
                //处理可写事件
                ev->callback(ev->fd, events[i].events, ev->arg);
            }
        }
    }

}

step 14:实现reactor销毁功能

代码语言:javascript
复制
int ntyreactor_destory(struct ntyreactor *reactor)
{
   
    // 关闭epoll
    close(reactor->epfd);

    struct eventblock *blk= reactor->evblks;
    struct eventblock *next;

    while (blk != NULL)
    {
   
        next = blk->next;
        // 释放内存块
        free(blk->events);
        free(blk);
        blk = next;
    }
    return 0;
}

简单使用示例

代码语言:javascript
复制
int main(int argc,char* argv[])
{
   
    // 创建reactor对象
    struct ntyreactor *reactor = (struct ntyreactor*)malloc(sizeof(struct ntyreactor));
    // 初始化reactor容器
    ntyreactor_init(reactor);

    // 定义监控的socket开始端口
    unsigned short port = SERVER_PORT;
    if (argc == 2)
    {
   
        port = atoi(argv[1]);
    }

    // 初始化套字接和监听端口列表
    int i = 0;
    int sockfds[PORT_COUNT] = {
    0 };
    for(i=0;i<PORT_COUNT;i++)
    {
   
        // 初始化socket端口
        sockfds[i] = init_sock(port + i);
        // 添加事件监听
        ntyreactor_addlistener(reactor, sockfds[i], accept_cb);
    }

    // reactor运行,主要是epoll的循环监听
    ntyreactor_run(reactor);
    // 销毁 reactor
    ntyreactor_destory(reactor);

    // 关闭socket集
    for (i = 0; i < PORT_COUNT; i++)
    {
   
        close(sockfds[i]);
    }

    // 释放reactor
    free(reactor);

    return 0;
}

四、总结

1、创建一个reactor对象,分配内存。 2、Reactor容器初始化: (1)创建IO多路复用器epoll,将文件描述符epfd保存到reactor容器中; (2)创建一个事件集合MAX_EPOLL_EVENTS * sizeof(struct events); (3)创建一个管理模块,用于管理(2)中创建的事件集合。这是一个链表,一个指针指向(2)中创建的事件集合,一个指针指向下一个块(block); (4)将事件集合添加到管理模块(block)中进管理; (5)将管理模块(block)保存到reactor容器,同时reactor的管理模块(block)置为1; (6)注意:如果申请内存使用malloc函数,最好使用memset将内存块初始化,避免脏数据。 3、soket初始化: (1)创建一个监听socket fd,socket(AF_INET,SOCK_STREAM,0); (2)设置socket fd为非阻塞模式,fcntl(fd,SETFL,O_NONBLOCK); (3)配置socket属性,主要是struct sockaddr_in结构体的sin_family、sin_addr.s_addr、sin_port; (4)bind(); (5)listen(); 4、事件监听 (1)以fd为key找到对应的管理块序号和偏移地址; (2)设置事件信息; (3)添加监听事件:是否可读。 5、reactor主循环(mainloop),主要是epoll的循环监听,处理事件到相关回调函数。 (1)事件监听,epoll_wait; (2)回调函数recv,处理可读事件(EPOLLIN); (3)回调函数send,处理可写事件(EPOLLOUT)。 6、销毁reactor,注意是事件集内存块的释放和链表的内存释放。 7、close监听端口socket fd。 8、释放reactor内存。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、Reactor网络模型简介
  • 二、Reactor的优点
  • 三、实现过程
    • step 1:定义Reactor模型相关结构体
      • step 2:实现Reactor容器初始化功能
        • step 3:实现socket初始化功能
          • step 4:实现Reactor动态扩容功能
            • step 5:实现Reactor索引功能
              • step 6:实现设置事件信息功能
                • step 7:实现IO事件监听功能
                  • step 8:实现IO事件移除功能
                    • step 9:实现Reactor事件监听功能
                      • step 10:实现recv回调函数
                        • step 11:实现send回调函数
                          • step 12:实现accept回调函数
                            • step 13:实现reactor运行函数
                              • step 14:实现reactor销毁功能
                                • 简单使用示例
                                • 四、总结
                                相关产品与服务
                                容器服务
                                腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
                                领券
                                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档