cv_bridge
是一个用于在ROS
(Robot Operating System)和OpenCV
之间进行图像转换的库。它提供了方便的接口和功能,用于在ROS中将ROS图像消息(sensor_msgs/Image
)与OpenCV图像格式之间进行相互转换。
在ROS中,cv_bridge
通常与sensor_msgs
包一起使用,用于处理图像消息,并使用OpenCV进行图像处理、计算机视觉算法和图像分析等操作。
以下是一些cv_bridge库的主要功能:
1.将ROS图像消息转换为OpenCV图像格式:cv_bridge提供了方便的方法,可以将ROS图像消息转换为OpenCV的cv::Mat格式,方便在OpenCV中进行图像处理。
2.将OpenCV图像转换为ROS图像消息:cv_bridge还提供了将OpenCV的cv::Mat图像转换为ROS图像消息的方法,以便将处理后的图像传递给其他ROS节点或话题。
3.支持不同的图像编码格式:cv_bridge支持各种常见的图像编码格式,包括JPEG、PNG、BMP等。它可以在ROS和OpenCV之间进行透明的编码和解码操作。
4.进行图像数据的共享:cv_bridge允许在ROS和OpenCV之间共享图像数据,而无需进行复制。这在处理大型图像时可以提高性能和效率。
正常情况下,安装完ros后可正常使用cv_bridge
包。
cv_bridge
一般要与OpenCV版本对应,比如noetic
对应OpenCV4
,melodic
对应OpenCV3
,如果在melodic环境下装了OpenCV4,可能会报错,可参考这篇来解决这个问题:http://t.csdnimg.cn/Sbwji
下面基于cv_bridge包实现opencv读取视频并通过ros消息发布,然后订阅节点获取到图像后通过opencv进行显示。
// image_pub.cpp
#include <ros/ros.h>
#include <opencv2/opencv.hpp>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
int main(int argc, char **argv)
{
ros::init(argc, argv, "image_pub");
ros::NodeHandle nh;
image_transport::ImageTransport it(nh);
image_transport::Publisher image_pub = it.advertise("camera/image", 1);
// 打开视频文件
cv::VideoCapture cap("../test.mp4");
if (!cap.isOpened())
{
ROS_ERROR("Failed to open video file");
return -1;
}
// 定义图像消息
sensor_msgs::ImagePtr msg;
ros::Rate loop_rate(30); // 发布频率为30Hz
while (ros::ok())
{
cv::Mat frame;
cap >> frame; // 读取视频帧
if (frame.empty())
{
ROS_INFO("Video ended");
break;
}
// 转换图像格式为ROS消息
msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", frame).toImageMsg();
// 发布图像消息
image_pub.publish(msg);
std::cout << "Published image" << std::endl;
ros::spinOnce();
loop_rate.sleep();
}
return 0;
}
CMakeLists.txt
cmake_minimum_required(VERSION 3.0.2)
project(image_pub)
## Compile as C++11, supported in ROS Kinetic and newer
add_compile_options(-std=c++11)
## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
roscpp
rospy
std_msgs
sensor_msgs
image_transport
cv_bridge
)
catkin_package(
CATKIN_DEPENDS
roscpp
rospy
std_msgs
sensor_msgs
image_transport
cv_bridge
)
###########
## Build ##
###########
## Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
include
${catkin_INCLUDE_DIRS}
)
add_executable(${PROJECT_NAME} src/image_pub.cpp)
## Specify libraries to link a library or executable target against
target_link_libraries(${PROJECT_NAME}
${catkin_LIBRARIES}
)
package.xml
<?xml version="1.0"?>
<package format="2">
<name>image_pub</name>
<version>0.0.0</version>
<description>The image_pub package</description>
<!-- One maintainer tag required, multiple allowed, one person per tag -->
<!-- Example: -->
<!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> -->
<maintainer email="xxx@todo.todo">xxx</maintainer>
<!-- One license tag required, multiple allowed, one license per tag -->
<!-- Commonly used license strings: -->
<!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->
<license>TODO</license>
<buildtool_depend>catkin</buildtool_depend>
<build_depend>roscpp</build_depend>
<build_depend>rospy</build_depend>
<build_depend>std_msgs</build_depend>
<build_depend>sensor_msgs</build_depend>
<build_depend>image_transport</build_depend>
<build_depend>cv_bridge</build_depend>
<exec_depend>roscpp</exec_depend>
<exec_depend>rospy</exec_depend>
<exec_depend>std_msgs</exec_depend>
<exec_depend>sensor_msgs</exec_depend>
<exec_depend>image_transport</exec_depend>
<exec_depend>cv_bridge</exec_depend>
<!-- The export tag contains other, unspecified, tags -->
<export>
<!-- Other tools can request additional information be placed here -->
</export>
</package>
// image_sub.cpp
#include <ros/ros.h>
#include <opencv2/opencv.hpp>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
void imageCallback(const sensor_msgs::ImageConstPtr &msg)
{
try
{
// 将ROS图像消息转换为OpenCV图像
cv::Mat image = cv_bridge::toCvShare(msg, "bgr8")->image;
// 显示图像
cv::imshow("Image", image);
cv::waitKey(1);
}
catch (cv_bridge::Exception &e)
{
ROS_ERROR("Failed to convert ROS image to OpenCV image: %s", e.what());
}
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "image_sub");
ros::NodeHandle nh;
// 创建图像传输对象和订阅者
image_transport::ImageTransport it(nh);
image_transport::Subscriber sub = it.subscribe("camera/image", 1, imageCallback);
// 创建opencv窗口本地显示
cv::namedWindow("Image", cv::WINDOW_AUTOSIZE);
ros::spin();
cv::destroyAllWindows();
return 0;
}
CMakeLists.txt和package.xml和发布节点基本一样,除了代码文件名不同。
# 运行节点
catkin_make # 编译
source devel/setup.bash
rosrun image_pub image_pub # 发布
rosrun image_sub image_sub # 订阅
这样就实现了ros图像与OpenCV图像之间的转换,以及使用opencv的VideoCapture类实现视频的读取与显示。
以上。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。