Loading [MathJax]/jax/input/TeX/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度

深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度

作者头像
GG Bond1
发布于 2024-06-14 13:09:55
发布于 2024-06-14 13:09:55
26900
代码可运行
举报
文章被收录于专栏:C/C++葵花宝典C/C++葵花宝典
运行总次数:0
代码可运行

前言:

相信很多学习数据结构的人,都会遇到一种情况,就是明明最一开始学习就学习了时间复杂度,但是在后期自己写的程序或者是做到哪个需要判断时间复杂度的题时,仍然判断不出来时间复杂度是多少,今天,我们结合我们上期学习的堆,给大家深入剖析一下时间复杂度这个概念,同时更深入的理解堆的概念,方便我们后期应用堆进行排序等。


一、堆排序

1、堆排序的大体思路

在上一篇我们已经讲过了堆是什么东西,我们已经知道堆有大堆和小堆两种形式,堆排序的想法正是借助它的这个特点诞生的,例如:

数组 { 7,8 ,3 ,5 ,1 ,9 ,5 ,4}在堆中分布为:

如图展示的是小堆,首先我们先强调一点,降序是需要小堆来解决,升序是需要大堆来解决 比如说图上这个数组,我们要求它的降序序列时,因为堆顶元素一定是堆中最小的,所以我们就可以把堆顶元素与堆尾元素进行交换,然后把堆尾元素刨除在外再进行降序排列

2、堆排序的实例讲解

堆排序与堆相比并没有什么新东西,把我前面那章看明白,这里直接把代码呈上

(除了test.c)其他的是直接从上一章搬过来的

Seqlist.h

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	int sz;
	int capacity;
}HP;
 
//初始化
void HeapInit(HP* php);
//销毁
void HeapDestory(HP* php);
//插入
void HeapPush(HP* php, HPDataType x);
//删除
void HeapPop(HP* php);
//找堆顶元素
HPDataType HeapTop(HP* php);
//判断是否为空
bool HeapEmpty(HP* php);
//算个数
int HeapSize(HP* php);

test.c

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
//堆排序
void HeapSort(int* a, int n)
{
	//建堆——向下调整建堆O(N-log(n))
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);

		//再调整,选出次小数
		AdjustDown(a, end, 0);
		end--;
	}
}
int main()
{
	int a[] = { 7,8,3,5,1,9,5,4 };
	HeapSort(a, sizeof(a) / sizeof(int));
	return 0;
}

Seqlist.c

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
//堆
//初始化
void HeapInit(HP* php)
{
	assert(php);
	php->a = NULL;
	php->capacity = 0;
	php->sz = 0;
}
//销毁
void HeapDestory(HP* php)
{
	free(php->a);
	free(php);
}
//交换
void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
//删除
 
//向上调整(小堆)
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
 
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}
//向下调整
void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child<n)
	{
		if (child+1<n&&a[child + 1] < a[child])
		{
			++child;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
 
//插入
void HeapPush(HP* php, HPDataType x)
{
	assert(php);
	if (php->sz == php->capacity)
	{
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);
		php->a = tmp;
		php->capacity = newcapacity;
	}
	php->a[php->sz] = x;
	php->sz++;
 
	//向上调整
	AdjustUp(php->a, php->sz - 1);
}
//删除
void HeapPop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	Swap(&php->a[0], &php->a[php->sz - 1]);
	php->sz--;
	//向下调整
	AdjustDown(php->a, php->sz,0);
}
//判断是否为空
bool HeapEmpty(HP* php)
{
	assert(php);
	return php->sz == 0;
}
//找堆顶元素
HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	return php->a[0];
}
//算个数
int HeapSize(HP* php)
{
	assert(php);
	return php->sz;
}

实现上述代码,我们就可以实现堆排序了

二、堆排序的时间复杂度

我们都知道在实现堆时有向上排序和向下排序两种,细心的人可能已经注意到,我在实现上面那个堆排序用例时,用的是向下排序,原因就是向下排序的时间复杂度更低,接下来,我们就来分析一下这两种排序各自的时间复杂度

向下排序的时间复杂度
向上排序的时间复杂度
堆排序整体的时间复杂度

计算堆排序整体的时间复杂度就是计算上面这两步的时间复杂度

第一步:

因为这一步实际上就是多次向下调整建堆,所以这一步时间复杂度就是向下调整法时间复杂度的倍数,那根据渐进表示法就可以表示为O(N-log(N)),因为当N很大时,log(N)比N小很多,所以可以忽略表示为O(N)

第二步:

第二步外循环需要N次,内循环看似每次都是一个完整的向下排序法,但其实随着循环次数的增加,里面向下排序的时间复杂度在不断减小,因为堆尾排过去的数字实际上就不用再参与堆排序的,所以这一步时间复杂度实际上是O(N*log)

因此,堆排序的时间复杂度为O(N+N*log(N))

总结

堆排序及其时间复杂度的讲解就到此为止了,如果有不理解的地方欢迎在评论区中指出或者与我私信交流,欢迎各位大佬来访!!!

创作不易,还请各位大佬点赞支持!!!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-06-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【数据结构】堆与堆排序
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆 ( 一种二叉树 ) 使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
用户11290673
2024/09/25
1130
【数据结构】堆与堆排序
【数据结构】——堆的实现以及直接选择排序、堆排序、向上、向下调整算法的时间复杂度推导及实现(超详细)
堆(Heap)是计算机科学中一类特殊的数据结构,是最高效的优先级队列。堆通常是一个可以被看作一棵完全二叉树的数组对象。
用户11286421
2024/09/23
2660
【数据结构】——堆的实现以及直接选择排序、堆排序、向上、向下调整算法的时间复杂度推导及实现(超详细)
DS:二叉树的顺序结构及堆的实现
顺序结构指的是利用数组来存储,一般只适用于表示完全二叉树,原因如上图,存储不完全二叉树会造成空间上的浪费,有的人又会问,为什么图中空的位置不能存储呢??原因是我们需要根据数组的下标关系才能访问到对应的节点!!有以下两个下标关系公式:
小陈在拼命
2024/02/17
1290
DS:二叉树的顺序结构及堆的实现
[数据结构]二叉树的顺序存储结构
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆 ( 一种二叉树 ) 使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
IT编程爱好者
2023/04/12
4390
[数据结构]二叉树的顺序存储结构
深入理解数据结构第一弹——二叉树(1)——堆
准备工作:本人习惯将文件放在test.c、SeqList.c、SeqList.h三个文件中来实现,其中test.c用来放主函数,SeqList.c用来放调用的函数,SeqList.h用来放头文件和函数声明
GG Bond1
2024/06/14
930
深入理解数据结构第一弹——二叉树(1)——堆
【数据结构】二叉树---堆
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。 有一个特殊的结点,称为根结点,根节点没有前驱结点。除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。因此,树是递归定义的。
YoungMLet
2024/03/01
1410
【数据结构】二叉树---堆
数据结构——二叉树
1. 子树之间不能有交集(子树不能相交)如果存在相交,那么就是另外一种数据结构图。
用户11352420
2024/11/07
1210
数据结构——二叉树
【数据结构】堆的实现和堆排序--TOP-K问题
堆是一种特殊的树形数据结构,常用于实现优先队列和堆排序。它基于完全二叉树,通常用数组表示。主要操作包括插入(通过上滤维护堆性质)和删除(通常删除堆顶元素,通过下滤恢复堆性质)。
用户11375356
2024/11/22
1330
【数据结构】堆的实现和堆排序--TOP-K问题
【数据结构和算法】---二叉树(2)--堆的实现和应用
如果有一个数字集合,并把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,且在逻辑结构(即二叉树)中,如果每个父亲节点都大于它的孩子节点那么此堆可以称为大堆;那么如果每个父亲节点都小于它的孩子节点那么此堆可以称为小堆。 堆的性质:
用户11029269
2024/03/19
1110
【数据结构和算法】---二叉树(2)--堆的实现和应用
数据结构从入门到精通——堆
堆是一种特殊的树形数据结构,具有完全二叉树的特性。在堆中,父节点的值总是大于或等于(大顶堆)或小于或等于(小顶堆)其子节点的值。堆通常用于实现优先队列,其中每个元素都有一个优先级,优先级最高的元素总是位于堆的根节点。堆的插入和删除操作的时间复杂度都是O(log n),因此堆是一种高效的数据结构。此外,堆还可以用于实现内存管理,例如垃圾回收和内存分配等。
鲜于言悠
2024/03/20
5920
数据结构从入门到精通——堆
数据结构——堆的应用 堆排序详解
只需要从第二个数8开始每次读取一个数据都向上调整为堆,那么读完整个数组就可以得到一个堆啦~🥰🥰
大耳朵土土垚
2024/03/13
1010
数据结构——堆的应用 堆排序详解
【初探数据结构】二叉树的顺序结构——堆的实现详解(上下调整算法的时间复杂度分析)
堆是一种基于完全二叉树的数据结构,通常分为最大堆(父节点值≥子节点)和最小堆(父节点值≤子节点)。由于完全二叉树的特性,堆可以用数组高效存储,通过索引关系快速定位父子节点。
我想吃余
2025/03/31
1310
【初探数据结构】二叉树的顺序结构——堆的实现详解(上下调整算法的时间复杂度分析)
【初阶数据结构】堆排序和TopK问题
那么我们可以把14默认为是一个符合前提的堆,然后从12往后不断向数组中插入元素,并不断向上调整,直至把整个数组元素全部插完,即完成堆的建立.
MicroFrank
2023/01/16
6610
【数据结构】树和二叉树——Lesson1
树是一种非线性的数据结构,它是由n(n>=0)个有限节点组成的一个具有层次关系的集合。它包含一个根节点以及若干子节点,子节点又可以有自己的子节点,以此类推。
_小羊_
2024/10/16
1360
【数据结构】树和二叉树——Lesson1
【算法与数据结构】深入解析二叉树(二)之堆结构实现
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
学习起来吧
2024/03/23
1320
【算法与数据结构】深入解析二叉树(二)之堆结构实现
数据结构——堆
调整算法用于堆的插入和删除后恢复堆的属性,但是用调整算法的前提是堆原本是有序的(大根堆或者小根堆)
HZzzzzLu
2024/11/26
1680
数据结构——堆
【数据结构】二叉树-堆(下)-链式二叉树
在排序当中,堆排序是一种时间复杂度较低的排序,要远优于冒泡排序,在使用堆排序时,要使用向下调整算法,这样我们就可以最大限度的减少时间的使用
s-little-monster
2024/06/06
1000
【数据结构】二叉树-堆(下)-链式二叉树
【数据结构】二叉树与堆
树的概念:树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
平凡的人1
2023/10/15
2480
【数据结构】二叉树与堆
【初阶数据结构】理解堆的特性与应用:深入探索完全二叉树的独特魅力
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段
是店小二呀
2024/07/30
1950
【初阶数据结构】理解堆的特性与应用:深入探索完全二叉树的独特魅力
二叉树详解(1)
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点(没有孩子的节点)
waves浪游
2024/08/17
1250
二叉树详解(1)
推荐阅读
相关推荐
【数据结构】堆与堆排序
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验