欢迎大家关注全网生信学习者系列:
GGPlot2(通常缩写为ggplot2)是一个在R语言中广泛使用的绘图包,以其灵活和强大的数据可视化功能而闻名。它基于"The Grammar of Graphics"一书的概念,允许用户通过组合不同的视觉元素来创建自定义的图形。而ggpubr是ggplot2的一个扩展包,它进一步简化了图形的创建过程,特别是对于初学者来说,提供了一种更为直观和易于理解的绘图方式。
ggpubr包中包含了许多高级的绘图功能,其中stat_compare_means
函数是一个特别有用的工具,它能够对不同的数据组进行假设检验分析,并且将检验结果直接可视化在图形上。这种功能对于科研人员和数据分析师来说非常有价值,因为它不仅提供了统计检验的结论,还通过图形的方式直观地展示了数据间的差异。
# install.packages("ggpubr")
# devtools::devtools::install_github("kassambara/ggpubr")
library(ggpubr)
plotdata <- data.frame(sex = factor(rep(c("F", "M"), each=200)),
weight = c(rnorm(200, 55), rnorm(200, 58)))
不同类型的可视化图形
ggdensity(plotdata,
x = "weight",
add = "mean",
rug = TRUE, # x轴显示分布密度
color = "sex",
fill = "sex",
palette = c("#00AFBB", "#E7B800"))
gghistogram(plotdata,
x = "weight",
bins = 30,
add = "mean",
rug = TRUE,
color = "sex",
fill = "sex",
palette = c("#00AFBB", "#E7B800"))
df <- ToothGrowth
head(df)
my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") )
ggboxplot(df,
x = "dose",
y = "len",
color = "dose",
palette =c("#00AFBB", "#E7B800", "#FC4E07"),
add = "jitter",
shape = "dose")+
stat_compare_means(comparisons = my_comparisons)+ # Add pairwise comparisons p-value
stat_compare_means(label.y = 50)
ggviolin(df,
x = "dose",
y = "len",
fill = "dose",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
add = "boxplot",
add.params = list(fill = "white"))+
stat_compare_means(comparisons = my_comparisons, label = "p.signif")+ # Add significance levels
stat_compare_means(label.y = 50)
ggdotplot(ToothGrowth,
x = "dose",
y = "len",
color = "dose",
palette = "jco",
binwidth = 1)
data("mtcars")
dfm <- mtcars
dfm$cyl <- as.factor(dfm$cyl)
dfm$name <- rownames(dfm)
head(dfm[, c("name", "wt", "mpg", "cyl")])
ggbarplot(dfm,
x = "name", y = "mpg",
fill = "cyl", # change fill color by cyl
color = "white", # Set bar border colors to white
palette = "jco", # jco journal color palett. see ?ggpar
sort.val = "asc", # Sort the value in dscending order
sort.by.groups = TRUE, # Sort inside each group
x.text.angle = 90) # Rotate vertically x axis texts
dfm$mpg_z <- (dfm$mpg -mean(dfm$mpg))/sd(dfm$mpg)
dfm$mpg_grp <- factor(ifelse(dfm$mpg_z < 0, "low", "high"),
levels = c("low", "high"))
# Inspect the data
head(dfm[, c("name", "wt", "mpg", "mpg_z", "mpg_grp", "cyl")])
ggbarplot(dfm, x = "name", y = "mpg_z",
fill = "mpg_grp", # change fill color by mpg_level
color = "white", # Set bar border colors to white
palette = "jco", # jco journal color palett. see ?ggpar
sort.val = "asc", # Sort the value in ascending order
sort.by.groups = FALSE, # Don't sort inside each group
x.text.angle = 90, # Rotate vertically x axis texts
ylab = "MPG z-score",
rotate = FALSE,
xlab = FALSE,
legend.title = "MPG Group")
ggdotchart(dfm, x = "name", y = "mpg",
color = "cyl", # Color by groups
palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
sorting = "descending", # Sort value in descending order
add = "segments", # Add segments from y = 0 to dots
rotate = TRUE, # Rotate vertically
group = "cyl", # Order by groups
dot.size = 6, # Large dot size
label = round(dfm$mpg), # Add mpg values as dot labels
font.label = list(color = "white", size = 9,
vjust = 0.5), # Adjust label parameters
ggtheme = theme_pubr()) # ggplot2 theme
ggdotchart(dfm, x = "name", y = "mpg_z",
color = "cyl", # Color by groups
palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
sorting = "descending", # Sort value in descending order
add = "segments", # Add segments from y = 0 to dots
add.params = list(color = "lightgray", size = 2), # Change segment color and size
group = "cyl", # Order by groups
dot.size = 6, # Large dot size
label = round(dfm$mpg_z,1), # Add mpg values as dot labels
font.label = list(color = "white", size = 9,
vjust = 0.5), # Adjust label parameters
ggtheme = theme_pubr())+ # ggplot2 theme
geom_hline(yintercept = 0, linetype = 2, color = "lightgray")
df <- datasets::iris
head(df)
ggscatter(df,
x = 'Sepal.Width',
y = 'Sepal.Length',
palette = 'jco',
shape = 'Species',
add = 'reg.line',
color = 'Species',
conf.int = TRUE)
ggscatter(df,
x = 'Sepal.Width',
y = 'Sepal.Length',
palette = 'jco',
shape = 'Species',
add = 'reg.line',
color = 'Species',
conf.int = TRUE)+
stat_cor(aes(color=Species),method = "pearson", label.x = 3)
data("mtcars")
dfm <- mtcars
dfm$cyl <- as.factor(dfm$cyl)
dfm$name <- rownames(dfm)
p1 <- ggscatter(dfm,
x = "wt",
y = "mpg",
color = "cyl",
palette = "jco",
shape = "cyl",
ellipse = TRUE)
p2 <- ggscatter(dfm,
x = "wt",
y = "mpg",
color = "cyl",
palette = "jco",
shape = "cyl",
ellipse = TRUE,
ellipse.type = "convex")
cowplot::plot_grid(p1, p2, align = "hv", nrow = 1)
ggscatter(dfm, x = "wt", y = "mpg",
color = "cyl", palette = "jco",
shape = "cyl",
ellipse = TRUE,
mean.point = TRUE,
star.plot = TRUE)
dfm$name <- rownames(dfm)
p3 <- ggscatter(dfm,
x = "wt",
y = "mpg",
color = "cyl",
palette = "jco",
label = "name",
repel = TRUE)
p4 <- ggscatter(dfm,
x = "wt",
y = "mpg",
color = "cyl",
palette = "jco",
label = "name",
repel = TRUE,
label.select = c("Toyota Corolla", "Merc 280", "Duster 360"))
cowplot::plot_grid(p3, p4, align = "hv", nrow = 1)
ggscatter(dfm,
x = "wt",
y = "mpg",
color = "cyl",
palette = "jco",
size = "qsec",
alpha = 0.5)+
scale_size(range = c(0.5, 15)) # Adjust the range of points size
p1 <- ggbarplot(ToothGrowth,
x = "dose",
y = "len",
add = "mean_se",
color = "supp",
palette = "jco",
position = position_dodge(0.8))+
stat_compare_means(aes(group = supp), label = "p.signif", label.y = 29)
p2 <- ggline(ToothGrowth,
x = "dose",
y = "len",
add = "mean_se",
color = "supp",
palette = "jco")+
stat_compare_means(aes(group = supp), label = "p.signif",
label.y = c(16, 25, 29))
cowplot::plot_grid(p1, p2, ncol = 2, align = "hv")
library(ggExtra)
p <- ggscatter(iris,
x = "Sepal.Length",
y = "Sepal.Width",
color = "Species",
palette = "jco",
size = 3,
alpha = 0.6)
ggMarginal(p, type = "boxplot")
sp <- ggscatter(iris,
x = "Sepal.Length",
y = "Sepal.Width",
color = "Species",
palette = "jco",
size = 3,
alpha = 0.6,
ggtheme = theme_bw())
xplot <- ggboxplot(iris,
x = "Species",
y = "Sepal.Length",
color = "Species",
fill = "Species",
palette = "jco",
alpha = 0.5,
ggtheme = theme_bw())+ rotate()
yplot <- ggboxplot(iris,
x = "Species",
y = "Sepal.Width",
color = "Species",
fill = "Species",
palette = "jco",
alpha = 0.5,
ggtheme = theme_bw())
sp <- sp + rremove("legend")
yplot <- yplot + clean_theme() + rremove("legend")
xplot <- xplot + clean_theme() + rremove("legend")
cowplot::plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv",
rel_widths = c(2, 1), rel_heights = c(1, 2))
library(cowplot)
# Main plot
pmain <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species))+
geom_point()+
ggpubr::color_palette("jco")
# Marginal densities along x axis
xdens <- axis_canvas(pmain, axis = "x")+
geom_density(data = iris, aes(x = Sepal.Length, fill = Species),
alpha = 0.7, size = 0.2)+
ggpubr::fill_palette("jco")
# Marginal densities along y axis
# Need to set coord_flip = TRUE, if you plan to use coord_flip()
ydens <- axis_canvas(pmain, axis = "y", coord_flip = TRUE)+
geom_boxplot(data = iris, aes(x = Sepal.Width, fill = Species),
alpha = 0.7, size = 0.2)+
coord_flip()+
ggpubr::fill_palette("jco")
p1 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"), position = "top")
p2 <- insert_yaxis_grob(p1, ydens, grid::unit(.2, "null"), position = "right")
ggdraw(p2)
# Scatter plot colored by groups ("Species")
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width",
color = "Species", palette = "jco",
size = 3, alpha = 0.6)
# Create box plots of x/y variables
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Box plot of the x variable
xbp <- ggboxplot(iris$Sepal.Length, width = 0.3, fill = "lightgray") +
rotate() +
theme_transparent()
# Box plot of the y variable
ybp <- ggboxplot(iris$Sepal.Width, width = 0.3, fill = "lightgray") +
theme_transparent()
# Create the external graphical objects
# called a "grop" in Grid terminology
xbp_grob <- ggplotGrob(xbp)
ybp_grob <- ggplotGrob(ybp)
# Place box plots inside the scatter plot
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
xmin <- min(iris$Sepal.Length); xmax <- max(iris$Sepal.Length)
ymin <- min(iris$Sepal.Width); ymax <- max(iris$Sepal.Width)
yoffset <- (1/15)*ymax; xoffset <- (1/15)*xmax
# Insert xbp_grob inside the scatter plot
sp + annotation_custom(grob = xbp_grob, xmin = xmin, xmax = xmax,
ymin = ymin-yoffset, ymax = ymin+yoffset) +
# Insert ybp_grob inside the scatter plot
annotation_custom(grob = ybp_grob,
xmin = xmin-xoffset, xmax = xmin+xoffset,
ymin = ymin, ymax = ymax)
sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width",
color = "lightgray")
p1 <- sp + geom_density_2d()
# Gradient color
p2 <- sp + stat_density_2d(aes(fill = ..level..), geom = "polygon")
# Change gradient color: custom
p3 <- sp + stat_density_2d(aes(fill = ..level..), geom = "polygon")+
gradient_fill(c("white", "steelblue"))
# Change the gradient color: RColorBrewer palette
p4 <- sp + stat_density_2d(aes(fill = ..level..), geom = "polygon") +
gradient_fill("YlOrRd")
cowplot::plot_grid(p1, p2, p3, p4, ncol = 2, align = "hv")
混合表、字体和图
# Density plot of "Sepal.Length"
#::::::::::::::::::::::::::::::::::::::
density.p <- ggdensity(iris, x = "Sepal.Length",
fill = "Species", palette = "jco")
# Draw the summary table of Sepal.Length
#::::::::::::::::::::::::::::::::::::::
# Compute descriptive statistics by groups
stable <- desc_statby(iris, measure.var = "Sepal.Length",
grps = "Species")
stable <- stable[, c("Species", "length", "mean", "sd")]
# Summary table plot, medium orange theme
stable.p <- ggtexttable(stable, rows = NULL,
theme = ttheme("mOrange"))
# Draw text
#::::::::::::::::::::::::::::::::::::::
text <- paste("iris data set gives the measurements in cm",
"of the variables sepal length and width",
"and petal length and width, respectively,",
"for 50 flowers from each of 3 species of iris.",
"The species are Iris setosa, versicolor, and virginica.", sep = " ")
text.p <- ggparagraph(text = text, face = "italic", size = 11, color = "black")
# Arrange the plots on the same page
ggarrange(density.p, stable.p, text.p,
ncol = 1, nrow = 3,
heights = c(1, 0.5, 0.3))
density.p <- ggdensity(iris, x = "Sepal.Length",
fill = "Species", palette = "jco")
stable <- desc_statby(iris, measure.var = "Sepal.Length",
grps = "Species")
stable <- stable[, c("Species", "length", "mean", "sd")]
stable.p <- ggtexttable(stable, rows = NULL,
theme = ttheme("mOrange"))
density.p + annotation_custom(ggplotGrob(stable.p),
xmin = 5.5, ymin = 0.7,
xmax = 8)
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。