前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >动归背包2

动归背包2

作者头像
用户11097514
发布2024-05-30 21:34:23
890
发布2024-05-30 21:34:23
举报
文章被收录于专栏:技术分享

474. 一和零

力扣题目链接 给你一个二进制字符串数组 strs 和两个整数 m 和 n 。 请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。 如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。 示例 1:

  • 输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3
  • 输出:4
  • 解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,”0001”,”1”,”0”} ,因此答案是 4 。 其他满足题意但较小的子集包括 {“0001”,”1”} 和 {“10”,”1”,”0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

  • 输入:strs = [“10”, “0”, “1”], m = 1, n = 1
  • 输出:2
  • 解释:最大的子集是 {“0”, “1”} ,所以答案是 2 。

提示:

  • 1 <= strs.length <= 600
  • 1 <= strs[i].length <= 100
  • strs[i] 仅由 ‘0’ 和 ‘1’ 组成
  • 1 <= m, n <= 100

题目分析

初次接触这种题 ,我基本上是想不出很好的解法,但是学了dp之后 ,才开始学会慢慢的将题目抽象化。但是对于这道题,我还是很难相处如何抽象成为我们能够接触的算法

跟随代码随想录的脚步 ,我才清楚的知道如何 解决这类题,如何抽象题目的信息作为我们解题的关键

思路

从题目中【请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 】这是我们需要得到的结果。那么我们就可以以这个为着手点。

其包括两个变量 m 个 0 和 n 个 1。那么按照一维数组的思路是很难说清楚的。所以我们这里用二维数组来定义dp数组

按照我们之前的解法

代码语言:javascript
复制
dp[j] =  Math.max(dp[j],dp[i- weight[i]] + value[i])
//它的意思就是 容量为 j 的背包 所容纳物品的最大价值为dp[j]

同理到这道题,我们定义dp数组的含义就可以这样定义

代码语言:javascript
复制
//容量为i个0和 j个1组成的背包  所能容纳的物品的最大数量(子集个数)为dp[i][j]
dp[i][j] = Math.max(dp[i][j],dp[i- zeroNumber][j - oneNumber] + 1); //加1代表的是自己个数+1

**那么我们抽象的结果就是: **

物品(子集) 是由 0和1组成。

背包(子集个数)是由 m个0 和 n个1组成。

实现

既然思路我们根据抽象的结果大致有了了解 , 那么我们就可以按照动归五部曲来进行实现

代码语言:javascript
复制
class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        //每个物品"10" ,"0001"...表示的是一个由 x个0 和 y个1组成
        //1. 首先确定dp数组的含义
        //2. 确 定递推公式
        //dp[i][j] 是指有i 个 0 和 j 个 1 组成的容器所能存储的物品的最大数量为dp[i][j]
        int[][] dp = new int[m+ 1][n +1];
        //3. 初始化dp数组     
        //dp[0][0] = 0 就是代表由0个0 和 0个1组成的容器能够存储的物品最大数量为0
        dp[0][0]=0;
        //4. 确定遍历顺序
        for(int i = 0 ;i <strs.length;i++){
            //先得出每个商品的 0 和 1 的个数
            int zeroNumber = 0;
            int oneNumber = 0;
            for(int k = 0;k < strs[i].length();k++){
                if(strs[i].charAt(k) == '0'){
                    zeroNumber++;
                }else{
                    oneNumber++;
                }
            }
            //然后遍历内层背包
            for(int x = m; x >= zeroNumber;x--){
                for(int y = n; y >= oneNumber; y--){
                    dp[x][y] = Math.max(dp[x][y],dp[x - zeroNumber][y - oneNumber] + 1);
                }
            }
        }
        //5.打印dp数组及返回结果
        return dp[m][n];
    }
}

494. 目标和

力扣题目链接 难度:中等 给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。 返回可以使最终数组和为目标数 S 的所有添加符号的方法数。 示例:

  • 输入:nums: [1, 1, 1, 1, 1], S: 3
  • 输出:5

解释:

  • -1+1+1+1+1 = 3
  • +1-1+1+1+1 = 3
  • +1+1-1+1+1 = 3
  • +1+1+1-1+1 = 3
  • +1+1+1+1-1 = 3

一共有5种方法让最终目标和为3。 提示:

  • 数组非空,且长度不会超过 20 。
  • 初始的数组的和不会超过 1000 。
  • 保证返回的最终结果能被 32 位整数存下。

题目分析

还是按照之前的分析方法【返回可以使最终数组和为目标数 S 的所有添加符号的方法数。】这是题目的需求

其实一开始我的思路是使用回溯算法直接将所有的结果得出,然后再返回列表大小

具体代码这里就不是实现了,具体参考代码随想录

代码语言:javascript
复制
class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum == target) {
            result.push_back(path);
        }
        // 如果 sum + candidates[i] > target 就终止遍历
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i + 1);
            sum -= candidates[i];
            path.pop_back();

        }
    }
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        int sum = 0;
        for (int i = 0; i < nums.size(); i++) sum += nums[i];
        if (S > sum) return 0; // 此时没有方案
        if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要各位小心数值溢出的问题
        int bagSize = (S + sum) / 2; // 转变为组合总和问题,bagsize就是要求的和

        // 以下为回溯法代码
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 需要排序
        backtracking(nums, bagSize, 0, 0);
        return result.size();
    }
};

最后运行的结果显示超时了。所以说回溯的解法是靠不住的。这里我们就可以用到动态规划了

思路

首先得到我们数组的总和为sum ,那么目标结论就是target = 加法总和 - 减法总和

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为加法总和(x)的背包,有几种方法

那么dp数组的含义我们就可以确定下来了

dp[j] : 装满容量为 j 的背包 ,总共有dp[j] 种方法

实现

根据我们的思路 就可以按照动归五部曲来进行实现

  1. 含义: dp[j] : 装满容量为 j 的背包 ,总共有dp[j] 种方法
  2. 动归表达式 : dp[j] += dp[j - nums[i]];
  3. 初始化 : dp[0] 表示装满背包容量为 0 的背包 ,总共有1种方法,那就是什么都不装
  4. 遍历顺序 :外层遍历物品 ,内层遍历背包
  5. 打印并返回结果
代码语言:javascript
复制
class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) sum += nums[i];
		//如果target过大 sum将无法满足
        if ( target < 0 && sum < -target) return 0;
        if ((target + sum) % 2 != 0) return 0;
        int size = (target + sum) / 2;
        if(size < 0) size = -size;
        int[] dp = new int[size + 1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = size; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[size];
    }
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-03-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 474. 一和零
    • 题目分析
      • 思路
        • 实现
        • 494. 目标和
          • 题目分析
            • 思路
              • 实现
              相关产品与服务
              容器服务
              腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档