前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Python中使用opencv-python进行人脸检测

Python中使用opencv-python进行人脸检测

作者头像
ccf19881030
发布2024-05-24 12:38:57
700
发布2024-05-24 12:38:57
举报
文章被收录于专栏:ccf19881030的博客ccf19881030的博客

Python中使用opencv-python进行人脸检测

之前写过一篇VC++中使用OpenCV进行人脸检测的博客。以数字图像处理中经常使用的lena图像为例,如下图所示:

使用OpenCV进行人脸检测十分简单,OpenCV官网给了一个Python人脸检测的示例程序,

Python人脸检测目录
Python人脸检测目录

objectDetection.py代码如下:

代码语言:javascript
复制
from __future__ import print_function
import cv2 as cv
import argparse

def detectAndDisplay(frame):
    frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    frame_gray = cv.equalizeHist(frame_gray)

    #-- Detect faces
    faces = face_cascade.detectMultiScale(frame_gray)
    for (x,y,w,h) in faces:
        center = (x + w//2, y + h//2)
        frame = cv.ellipse(frame, center, (w//2, h//2), 0, 0, 360, (255, 0, 255), 4)

        faceROI = frame_gray[y:y+h,x:x+w]
        #-- In each face, detect eyes
        eyes = eyes_cascade.detectMultiScale(faceROI)
        for (x2,y2,w2,h2) in eyes:
            eye_center = (x + x2 + w2//2, y + y2 + h2//2)
            radius = int(round((w2 + h2)*0.25))
            frame = cv.circle(frame, eye_center, radius, (255, 0, 0 ), 4)

    cv.imshow('Capture - Face detection', frame)

parser = argparse.ArgumentParser(description='Code for Cascade Classifier tutorial.')
parser.add_argument('--face_cascade', help='Path to face cascade.', default='data/haarcascades/haarcascade_frontalface_alt.xml')
parser.add_argument('--eyes_cascade', help='Path to eyes cascade.', default='data/haarcascades/haarcascade_eye_tree_eyeglasses.xml')
parser.add_argument('--camera', help='Camera divide number.', type=int, default=0)
args = parser.parse_args()

face_cascade_name = args.face_cascade
eyes_cascade_name = args.eyes_cascade

face_cascade = cv.CascadeClassifier()
eyes_cascade = cv.CascadeClassifier()

#-- 1. Load the cascades
if not face_cascade.load(cv.samples.findFile(face_cascade_name)):
    print('--(!)Error loading face cascade')
    exit(0)
if not eyes_cascade.load(cv.samples.findFile(eyes_cascade_name)):
    print('--(!)Error loading eyes cascade')
    exit(0)

camera_device = args.camera
#-- 2. Read the video stream
cap = cv.VideoCapture(camera_device)
if not cap.isOpened:
    print('--(!)Error opening video capture')
    exit(0)

while True:
    ret, frame = cap.read()
    if frame is None:
        print('--(!) No captured frame -- Break!')
        break

    detectAndDisplay(frame)

    if cv.waitKey(10) == 27:
        break

所在目录为D:\env_build\opencv4.9.0\opencv\sources\samples\python\tutorial_code\objectDetection\cascade_classifier\objectDetection.py

人脸识别的背景

人脸识别可以用在身份认证,门禁等场合中,可以通过训练大量的人脸数据获取人脸的特征。但是实际场景可以比较复杂,由于灯光、视角、视距、摄像头抖动以及数字噪声的变化,图像细节变得不稳定;还有戴了口罩、帽子之后对于人脸的检测就变得更麻烦了。Haar 特征是一种用于实现实时人脸跟踪的特征。每一个 Haar 特征都描述了相邻图像区域的对比模式。例如,边,顶点和细线都能生成具有判别性的特征。

haar级联数据获取

在 sources 的一个文件夹 data/haarcascades。该文件夹包含了所有 OpenCV 的人脸检测的 XML 文件,这些可用于检测静止图像、视频和摄像头所得到图像中的人脸。如下图所示:

haar级联数据
haar级联数据
  • 人脸检测器(默认):haarcascade_frontalface_default.xml
  • 人脸检测器(快速 Harr):haarcascade_frontalface_alt2.xml
  • 人脸检测器(侧视):haarcascade_profileface.xml
  • 眼部检测器(左眼):haarcascade_lefteye_2splits.xml
  • 眼部检测器(右眼):haarcascade_righteye_2splits.xml
  • 身体检测器:haarcascade_fullbody.xml
  • 上半身检测器:haarcascade_upperbody.xml 其中,本文中我们使用默认的人脸检测器xml配置文件haarcascade_frontalface_default.xml ,可以从https://github.com/murtazahassan/Learn-OpenCV-in-3-hours/blob/master/Resources/haarcascade_frontalface_default.xml处下载

资源图片地址

人脸资源图片地址为:https://github.com/murtazahassan/Learn-OpenCV-in-3-hours/blob/master/Resources/lena.png

Python中使用opencv-python库进行人脸检测示例代码

示例代码如下所示:

代码语言:javascript
复制
import cv2

faceCascade = cv2.CascadeClassifier("Resources/haarcascade_frontalface_default.xml")
img = cv2.imread("Resources/lena.png")
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(imgGray, 1.1, 4)

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

cv2.imshow("Result", img)
cv2.waitKey(0)

运行结果如下图所示:

程序运行结果
程序运行结果

使用OpenCV官方的python人脸检测示例代码进行实时人脸和眼睛检测

opencv4.9.0\opencv\sources\samples\python\tutorial_code\objectDetection\cascade_classifier\objectDetection.py修改后的示例代码如下:

代码语言:javascript
复制
from __future__ import print_function
import cv2 as cv
import argparse

def detectAndDisplay(frame):
    frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    frame_gray = cv.equalizeHist(frame_gray)

    #-- Detect faces
    faces = face_cascade.detectMultiScale(frame_gray)
    for (x,y,w,h) in faces:
        center = (x + w//2, y + h//2)
        frame = cv.ellipse(frame, center, (w//2, h//2), 0, 0, 360, (255, 0, 255), 4)

        faceROI = frame_gray[y:y+h,x:x+w]
        #-- In each face, detect eyes
        eyes = eyes_cascade.detectMultiScale(faceROI)
        for (x2,y2,w2,h2) in eyes:
            eye_center = (x + x2 + w2//2, y + y2 + h2//2)
            radius = int(round((w2 + h2)*0.25))
            frame = cv.circle(frame, eye_center, radius, (255, 0, 0 ), 4)

    cv.imshow('Capture - Face detection', frame)

face_cascade_name = "data/haarcascades/haarcascade_frontalface_alt.xml"
eyes_cascade_name = "data/haarcascades/haarcascade_eye_tree_eyeglasses.xml"

face_cascade = cv.CascadeClassifier()
eyes_cascade = cv.CascadeClassifier()

#-- 1. Load the cascades
if not face_cascade.load(cv.samples.findFile(face_cascade_name)):
    print('--(!)Error loading face cascade')
    exit(0)
if not eyes_cascade.load(cv.samples.findFile(eyes_cascade_name)):
    print('--(!)Error loading eyes cascade')
    exit(0)

camera_device = 0
#-- 2. Read the video stream
cap = cv.VideoCapture(camera_device)
if not cap.isOpened:
    print('--(!)Error opening video capture')
    exit(0)

while True:
    ret, frame = cap.read()
    if frame is None:
        print('--(!) No captured frame -- Break!')
        break

    detectAndDisplay(frame)

    if cv.waitKey(10) == 27:
        break

上述代码从摄像头实时采集数据,使用haar级联人脸正面和眼睛的训练测试结果xml配置文件,对采集到的每一帧图像进行人脸和眼睛的检测,并做椭圆标记,如下图所示:

实时人脸和眼睛检测
实时人脸和眼睛检测

参考资料

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-02-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Python中使用opencv-python进行人脸检测
    • 人脸识别的背景
      • haar级联数据获取
        • 资源图片地址
          • Python中使用opencv-python库进行人脸检测示例代码
            • 使用OpenCV官方的python人脸检测示例代码进行实时人脸和眼睛检测
              • 参考资料
              相关产品与服务
              人脸识别
              腾讯云神图·人脸识别(Face Recognition)基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于在线娱乐、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档