前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >《迁移学习与联邦学习:推动人工智能发展的关键力量》

《迁移学习与联邦学习:推动人工智能发展的关键力量》

作者头像
程序员阿伟
发布于 2025-01-02 00:44:23
发布于 2025-01-02 00:44:23
2010
举报

人工智能的发展历程中,数据和模型的学习方式不断演进。迁移学习和联邦学习作为两种重要的技术,正逐渐成为行业关注的焦点。

迁移学习:跨越边界的智慧

迁移学习旨在将从一个任务中学习到的知识迁移到另一个相关任务中。简单来说,它利用已有的知识来加速新任务的学习。比如,在图像识别领域,一个已经训练好的模型可以在不同的图像数据集上进行微调,从而快速适应新的图像识别任务。

迁移学习的核心优势在于它能够利用丰富的源数据。这些源数据可以来自不同的领域、不同的任务,甚至不同的模态。通过迁移学习,我们可以避免重复训练,节省时间和资源。例如,在医学图像识别中,从大量的X光图像数据中学习到的特征可以迁移到对其他类型医学图像的识别中,大大提高了模型的效率和准确性。

迁移学习还可以解决数据稀缺问题。在一些领域,获取大量的标注数据往往是困难且昂贵的。通过迁移学习,我们可以利用已有的标注数据,将其迁移到新的任务中,从而减少对新数据的依赖。这种方式不仅可以提高模型的性能,还可以降低成本。

联邦学习:数据安全与合作的新范式

联邦学习是一种分布式机器学习技术,它允许多个参与方在不共享数据的情况下进行联合学习。每个参与方拥有自己的数据,通过加密和安全协议,在本地进行模型训练,并将更新后的模型发送到中央服务器。中央服务器再综合各方的模型更新,形成最终的全局模型。

联邦学习的优势在于保护数据隐私。在传统的机器学习中,数据集中在一个中心服务器上进行处理,这可能会导致数据泄露和隐私问题。而联邦学习通过在本地进行数据处理,避免了数据的集中存储和传输,从而保护了数据的隐私。例如,在医疗领域,各个医院可以在不共享患者数据的情况下进行联合学习,既保护了患者的隐私,又提高了医疗服务的质量。

联邦学习还促进了数据的共享和合作。不同的参与方可以在不共享数据的前提下进行合作,共同开发和优化模型。这种方式可以打破数据壁垒,实现资源的共享和优势互补。例如,在金融领域,不同的银行可以通过联邦学习共享客户数据,共同提高风险评估和欺诈检测的能力。

迁移学习与联邦学习在人工智能中的应用价值

迁移学习和联邦学习在人工智能的各个领域都有着广泛的应用。在自然语言处理中,迁移学习可以帮助模型快速适应不同的语言和任务。例如,将在英语文本上训练的模型迁移到其他语言的文本处理中,提高模型的效率和准确性。

联邦学习则在数据安全和隐私保护方面发挥着重要作用。在云计算大数据领域,联邦学习可以确保数据的安全和隐私,同时实现数据的共享和合作。例如,在企业的内部网络中,不同部门可以通过联邦学习进行联合学习,提高业务效率和竞争力。

迁移学习和联邦学习还可以促进人工智能的创新和发展。通过迁移学习和联邦学习,我们可以打破数据和模型的局限,实现资源的优化配置和共享。这不仅可以提高模型的性能和效率,还可以推动人工智能技术的创新和发展。

迁移学习和联邦学习作为人工智能领域的重要技术,为我们提供了新的学习和合作方式。它们在提高模型性能、保护数据隐私、促进数据共享等方面发挥着重要作用。随着技术的不断发展和应用,迁移学习和联邦学习将为人工智能的发展带来更多的机遇和挑战。我们期待它们在未来的发展中能够创造更多的价值,推动人工智能技术的进步和社会的发展。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-12-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
微众银行AI团队开源联邦学习框架,并发布《联邦学习白皮书1.0》
【导语】2019年,联邦学习成为业界技术研究与应用的焦点。近日,微众银行 AI 项目组编制并发布了《联邦学习白皮书1.0》,并开源了自研的联邦学习框架。白皮书中对联邦学习的背景、概述、分类、研究、应用案例与发展路径进行了全面的介绍,总结了联邦学习技术发展至今取得的成果以及对未来的展望。
AI科技大本营
2019/10/08
5.2K0
微众银行AI团队开源联邦学习框架,并发布《联邦学习白皮书1.0》
联邦学习 OR 迁移学习?No,我们需要联邦迁移学习
海量训练数据是现代机器学习算法、人工智能技术在各个领域中应用获得成功的重要条件。例如,计算机视觉和电子商务推荐系统中的 AI 算法都依赖于大规模的标记良好的数据集才能获得较好的处理效果,如 ImageNet 等。然而在一些应用领域中,例如医学领域、经济学领域以及一些政务信息化领域中,海量的可用训练数据往往是非常有限的。存在这些问题的主要原因:一是,针对机器学习算法的数据标注任务需要专业的知识和经验才能完成,这种预处理任务的成本非常高,往往无法获得机器学习所需要的足够的标注数据。二是,各个行业对数据隐私和数据安全的保护越来越强,在一定程度上也限制了对训练数据的共享,也就进一步加剧了可用的标注数据缺乏的问题。
机器之心
2020/11/20
1.2K0
联邦学习 OR 迁移学习?No,我们需要联邦迁移学习
联邦学习(Federated Learning)概述
也许很多人从未听说过联邦学习是联邦学习?甚至从词义本身也无法得知是何种领域的技术。今天我将为大家介绍一下这种近几年由人工智能与区块链技术结合并衍生出的一种全新概念,联邦学习。关于联邦学习的定义,可以理解为是在保证数据隐私安全及合法合规的基础上,利用各个节点掌握的数据实现共同建模,提升AI模型的效果。联邦学习最早在 2016 年由谷歌提出,原本用于解决安卓手机终端用户在本地更新模型的问题。目前广泛用于人工智能研究方向。
全栈程序员站长
2022/11/17
5.3K0
联邦学习(Federated Learning)概述
机器之心专访杨强教授:联邦迁移学习与金融领域的AI落地
7 月 21 日、22 日,由 KDD China 主办,西南交通大学和京东金融承办的 KDD Summer School 暨 KDD Pre-Conference,「交通大数据智能」论坛在成都举行,多位知名数据挖掘领域专家以及 KDD 2018 国际会议录用论文的作者介绍了自己的工作以及各自领域的进展。
机器之心
2018/08/07
1.3K0
李开复口中的“联邦学习” 到底是什么?| 技术头条
近日,在百大人物峰会上,创新工场创始人李开复谈及数据隐私保护和监管问题时,表示:“人们不应该只将人工智能带来的隐私问题视为一个监管问题,可尝试用‘以子之矛攻己之盾’——用更好的技术解决技术带来的挑战,例如同态加密、联邦学习等技术。”
AI科技大本营
2019/05/13
1.4K0
李开复口中的“联邦学习” 到底是什么?| 技术头条
深度学习的新进展:探索人工智能的未来
在科技日新月异的今天,深度学习作为人工智能领域的一颗璀璨明珠,正在引领着技术创新的浪潮。它通过模拟人类大脑的神经网络结构,让机器具备了强大的学习和推理能力。随着计算资源的不断提升和算法的不断优化,深度学习已经在许多领域取得了令人瞩目的成就,为人类生活带来了极大的便利。
屿小夏
2024/02/18
3910
三大技术基础推动人工智能走向实用
人工智能从幕后走向实用离不开人工智能技术取得的突破和发展。在互联网时代背景下,大数据、新型高性能计算架构以及深度学习帮助人工智能技术实现了从量变到质变的转变。其中,计算机视觉、语音识别技术均已能够规模
用户1332428
2018/03/08
1.7K0
三大技术基础推动人工智能走向实用
联邦学习助力人工智能新模型进化(附:金融隐私计算实战项目)
2016年是人工智能(ArtificiaIntelligence,AI)成熟的一年。随着AlphaGo击败人类顶级围棋手,我们真正见证了人工智能的巨大潜力,并开始期待更复杂、更尖端的人工智能技术可以应用在更多的领域,包括无人驾驶、生物医疗、金融等。 如今,人工智能技术在各行各业都显示出了优势。人们自然希望像AlphaGo这样的由大数据驱动的人工智能技术能够很快在生活中应用起来。然而,现实有些令人失望:除了少数行业,大多数领域只拥有有限的数据或质量较差的数据,这使AI技术的落地比我们想象的更困难。是否通过跨组
机器学习AI算法工程
2022/08/26
8770
联邦学习助力人工智能新模型进化(附:金融隐私计算实战项目)
微众银行首席人工智能官杨强:可信联邦学习让隐私计算既安全又可用
近来,微众银行在IJCAI 2022、TPAMI 2022、ACM TIST等顶级学术期刊和顶会上接连发表了联邦学习领域最新进展的前沿论文。究竟哪些理论实践为产业界带来了新的研究和落地视角?为此,我们采访了微众银行首席人工智能官杨强教授,看他是如何带领团队取得这一领域研究的突破性进展。
AI科技大本营
2022/12/10
1K0
微众银行首席人工智能官杨强:可信联邦学习让隐私计算既安全又可用
Transformer模型与联邦机器学习详解!
Transformer 作为一种基于注意力的编码器 - 解码器架构,不仅彻底改变了自然语言处理(NLP)领域,还在计算机视觉(CV)领域做出了一些开创性的工作。与卷积神经网络(CNN)相比,视觉 Transformer(ViT)依靠出色的建模能力,在 ImageNet、COCO 和 ADE20k 等多个基准上取得了非常优异的性能。 正如德克萨斯大学奥斯汀分校的计算机科学家 Atlas Wang 说:我们有充分的理由尝试在整个 AI 任务范围内尝试使用 Transformer。 因此,无论是学术界的研究人员,
zenRRan
2022/04/08
1.3K0
Transformer模型与联邦机器学习详解!
联邦学习技术应运而生!
联邦学习作为一种强调数据安全和隐私保护的分布式机器学习技术,在人工智能广泛发挥作用的背景下,受到广泛关注。
Datawhale
2021/06/01
1.3K0
联邦学习技术应运而生!
Nat. Mach.Intell. | 数据驱动的联邦学习:知识蒸馏助力药物发现新突破
人工智能在科学研究中的一大挑战是如何确保获取足够的高质量数据,以构建具有影响力的模型。尽管公共数据资源丰富,但最有价值的知识往往深藏于企业的机密数据孤岛之中。尽管各行业日益开放共享非竞争性信息,这种合作仍受到数据机密性的限制。联邦学习(Federated Learning, FL)使得知识共享成为可能,同时保护数据隐私,但仍存在显著局限性。
DrugAI
2025/03/06
1490
Nat. Mach.Intell. | 数据驱动的联邦学习:知识蒸馏助力药物发现新突破
CCAI 演讲回顾 | 杨强:GDPR对AI的挑战和基于联邦迁移学习的对策
2019年中国人工智能大会(Chinese Congress on Artificial Intelligence 2019,简称“CCAI 2019”)将于9月21日-22日在青岛胶州召开。
马上科普尚尚
2020/05/13
6840
CCAI 演讲回顾 | 杨强:GDPR对AI的挑战和基于联邦迁移学习的对策
一文重新认识联邦学习
人工智能助力抗疫又添新场景。据报道,英国剑桥爱登布鲁克医院(Addenbrooke’s Hospital)与全球20家医院和医疗科技中心联合医疗科技领军企业英伟达采用人工智能预测新冠肺炎患者从抵院急救起24小时内的氧气需求量。
用户8049510
2022/01/12
4330
微众银行AI团队亮相CCF年度盛会,探讨“联邦学习”下一个十年
人工智能发展目前所面临的严重挑战是什么?众所周知,人工智能离不开大数据,然而现在多数行业中遇到的是小数据,是数据割裂、数据孤岛,成为限制人工智能发展的一大瓶颈。人工智能领域的科学家们如何解决这一难题?
陆勤_数据人网
2019/06/21
7740
微众银行AI团队亮相CCF年度盛会,探讨“联邦学习”下一个十年
从概念到技术,再到国际标准和开源社区,联邦学习只用两年时间
8 月 16 日,第二十八届国际联合人工智能大会(IJCAI 2019)在澳门成功闭幕。
AI科技评论
2019/09/04
4770
从概念到技术,再到国际标准和开源社区,联邦学习只用两年时间
CACM观点:超越联邦学习,让AI跨越公司边界
编译丨张泷玲、杨柳 编辑丨维克多 今年1月份,苏黎世联邦理工学院的Stefan Feuerriegelc教授在 《Communications of the ACM》期刊上刊文“Artificial Intelligence Across Company Borders”,在文中教授指出了人工智能(AI)产业落地过程中常见挑战:如何开展跨公司合作? 教授表示:通过数据共享构造大规模的跨公司数据集是一种方式,但有数据保密和隐私泄漏风险,且受隐私相关法律的限制。 而保护隐私的分布式机器学习框架—联邦学习,能让
AI科技评论
2022/05/09
3040
CACM观点:超越联邦学习,让AI跨越公司边界
2023值得关注的人工智能7大发展趋势
随着人工智能技术的不断创新和应用,我们可以看到人工智能在各个领域的应用越来越广泛。其中,有一些趋势特别值得我们关注。
TSINGSEE青犀视频
2023/08/04
2500
联邦学习诞生1000天的真实现状丨万字长文
从“自给自足”的To C模式,到企业之间互联互通的To B模式,再到金融、医疗、安防全场景应用的过程。
AI科技评论
2020/04/20
1.5K0
联邦学习诞生1000天的真实现状丨万字长文
DeepSeek医疗影像诊断:从数据到模型的落地密码(8/18)
摘要:《DeepSeek医疗影像诊断:从数据到模型的落地密码南》通过详细介绍DICOM数据预处理规范、3D器官分割模型训练以及联邦学习保障数据隐私等方面的内容,为医疗影像诊断的实践提供了全面的指导。这些技术和方法的应用,不仅可以提高医疗影像诊断的准确性和效率,还可以有效保护患者数据的隐私,推动医疗影像诊断技术的发展和应用。
正在走向自律
2025/02/20
7390
DeepSeek医疗影像诊断:从数据到模型的落地密码(8/18)
推荐阅读
相关推荐
微众银行AI团队开源联邦学习框架,并发布《联邦学习白皮书1.0》
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档