前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【C++】vector容器初步模拟

【C++】vector容器初步模拟

作者头像
叫我龙翔
发布2024-03-23 08:23:41
1210
发布2024-03-23 08:23:41
举报
文章被收录于专栏:就业 C++ 综合学习
今天我我来进行vector的模拟实现,先简单的实现一下初步功能,使其对内置类型可以适配。(大部分与string很类似)

1 认识vector

开始了解

  1. vector是表示可变大小数组的序列容器。
  2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
  6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。

使用STL的三个境界:能用,明理,能扩展 ,那么下面学习vector,我们也是按照这个方法去学习

底层实现

我们来了解一下vector的底层实现是如何做到,首先就要了解其类成员是如何定义的,这样我们才能更好的复刻vector(以下是1996年的STL版本,还比较简单):

代码语言:javascript
复制
protected:
  typedef simple_alloc<value_type, Alloc> data_allocator;
  iterator start; 
  iterator finish;
  iterator end_of_storage //容量结束;

可以看到受保护的内部成员变量是由三个迭代器构成的。 迭代器的底层是:

代码语言:javascript
复制
typedef T value_type;
typedef value_type* iterator;

也就是说底层是指针,T是模版类的参数。接下来我们在观察一下构造函数是如何操作的(参考一部分):

代码语言:javascript
复制
 vector() : start(0), finish(0), end_of_storage(0) {}
 vector(size_type n, const T& value) { fill_initialize(n, value); }
 vector(int n, const T& value) { fill_initialize(n, value); }
 vector(long n, const T& value) { fill_initialize(n, value); }

这个fill_initialize又是什么呢???是初始化函数,(在工程文件中,经常使用一层又一层的嵌套,由于我还没有丰富的工程经验,我看起来还是很费劲,晕乎乎的)。我们看一部分即可,现在我们开始手搓vector,针对内置类型进行操作。

2 开始实现

我们开始逐步进行实现。

成员变量

根据我们刚才所查看的源码,我们要使用三个迭代器,要使用迭代器,我们可以使用指针进行模拟。

代码语言:javascript
复制
//使用模版 兼容各种类型
template<typename T>
class vector {
public:
	//重命名 指针即可模拟迭代器 常量与非常量都要提供哦
	typedef T* iterator;
	typedef const T* const_iterator;
	private:
		iterator _start = nullptr;
		iterator _finish = nullptr;
		iterator _end = nullptr;
	};

写出三个迭代器(指针)后,我们对构造函数应该也有了大致思路:需要初始化三个迭代器,所以我们给与初始值nullptr。让后进行开辟空间。

构造函数 析构函数

这里的构造函数我设置三个接口,一个是空构造,一个是开辟 N 个空间并初始化为val,一个是拷贝构造:

代码语言:javascript
复制
//空构造
vector() 
{}
//开辟 N 个空间并初始化为val
vector(size_t n,T val = T()) {
	iterator tmp = new T[n];
	_start = tmp;
	for (iterator it = begin(); it < _start + n ;it++) {
		 *it= val;
	}
	_finish = _start + n;
	_end = tmp + n ;

}
/拷贝构造
vector(vector<T>& v) {
	//依次尾插即可完成操作
	for (auto s : v) {
		push_back(s);
	}
}

析构函数就是简单的释放空间即可:

代码语言:javascript
复制
	~vector()
	{
		delete[] _start;
		_start = _finish = _end = nullptr;
	}

我们完成了构造函数和析构函数,为了能够进行测试,我们现在来实现尾插操作:

尾插

尾插操作之前,根据我们实现string的经验来说,我们需要做一些准备工作,实现一些常用接口(size(),capacity(),reserve(),resize()): 注意:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。

代码语言:javascript
复制
		//注意const 保证不会进行权限的放大
		size_t size() const{
			return _finish - _start;
		}
		size_t capacity() const{
			return _end - _start;
		}
		bool empty(){
			return size() == 0;
		}
		//扩容
		void reserve(size_t newcapacity) {
			//记录位置
			size_t n = _finish - _start;
			T* tmp = new T[newcapacity];
			//拷贝
			memcpy(tmp, _start, size() * sizeof(T));
			_start = tmp;
			_finish = _start + n;
			_end = _start + newcapacity;
		}
		//改变大小
		void resize(size_t n, T val = T()) {
			//x需要扩容
			if ( n > size())
			{
				reserve(n);
				 ;
				while (_finish != _end) {
					*_finish = val;
					_finish++;
				}
				
			}
			//不需扩容
			else 
			{
				_finish = _start + n;
			}
		}

实现了这些接口,就可以顺畅的进行尾插的书写,通过size()和capacity()可以判断是否需要扩容,reserve可以进行扩容。然后再_finish位置插入新的数据,再移动_finish即可。

代码语言:javascript
复制
		//尾插
		void push_back(T val) 
		{
			if (size() == capacity()) {
				//扩容
				reserve(capacity() == 0 ? 4 : 2 * capacity());
			}
			*_finish = val;
			_finish++;
		}

接下来我们在完善一下迭代器。

迭代器

迭代器的实现很简单,对指针进行重命名即可(真正的迭代器没有这么简单)

代码语言:javascript
复制
typedef T* iterator;
typedef const T* const_iterator;

//迭代器
iterator begin() { return _start; }
iterator end() { return _finish; }
const_iterator begin() const{ return _start; }
const_iterator end() const{ return _finish; }

完成了begin() 和end()函数,就可以使用基于范围的for循环了。 我们进行一个简单的测试,来看看我们写的构造,尾插是否正常。

代码语言:javascript
复制
template<class T>
void print_vector(const vector<T> v) {
	for (size_t i = 0; i < v.size(); i++) {
		cout << v[i] << " ";
	}
	cout << endl;
}
//构造,尾插测试
void vector_test1() {
	cout << "---------构造 ,尾插测试---------\n";
	vector<int> v1;
	vector<int> v2(4);

	v2.push_back(1);
	v2.push_back(2);
	v2.push_back(3);
	v2.push_back(4);

	print_vector(v2);

	v1.push_back(5);
	v1.push_back(6);
	print_vector(v1);
	cout << v1.size() << endl;
	cout << v1.capacity() << endl;

	vector<int> v3(v1);
	print_vector(v3);
}

看一下效果:

没有问题!!!

插入 删除 寻找操作

这个也很简单,对数据进行挪动就可以完成:

代码语言:javascript
复制
//任意位置插入
void insert(size_t pos = 0,T val = T()) {
//保证在数据范围之内
	assert(pos >= 0);
	assert(pos <= size());
	//检查
	if (size() == capacity()) {
		//扩容
		reserve(capacity() == 0 ? 4 : 2 * capacity());
	}

	iterator it = end();
	//依次后移 然后插入
	while (it >= begin() + pos) {
		*(it + 1) = *it;
		it--;
	}
	it++;
	*it = val;
	_finish++;
}
void erease(size_t pos) 
{
//保证在数据范围之内
	assert(pos >= 0);
	assert(pos <= size());

	iterator it = begin() + pos;
	//依次前移
	while (it < end()) {
		*it = *(it + 1);
		it++;
	}
	_finish--;

}
//尾删
void pop_back() {
	erease(size());
			
}
size_t find(T val = T()) 
{
	//依次寻找
	for (iterator it = _start; it < _finish;it++) {
		if (*it == val) return it - _start;
	}
	return -1;
}

操作符重载

vector容器最重要的操作符应该就是[ ]操作了吧,此外重载一个 = :

代码语言:javascript
复制
//提供常量与非常量
T& operator[](size_t n) { assert(n >= 0); assert(n < size()); return *(_start + n); }
const T& operator[](size_t n) const { assert(n >= 0); assert(n < size()); return *(_start + n); }
//类似拷贝
vector<T>& operator=(vector<T>& v){

	T* tmp = new T[v.capacity()];
	memcpy(tmp, v._start, v.size() * sizeof(T));
	size_t pos = v.size();
	size_t n = v.capacity();

	_start = tmp;
	_finish = _start + pos;
	_end = _start + capacity();

	return *this;
}

这样就完成了: 我们进行一个测试来看看是否可行:

代码语言:javascript
复制
void vector_test2() {
	cout << "---------resize find insert erase测试---------\n";
	
	vector<int> v1;

	v1.push_back(1);
	v1.push_back(2);
	v1.push_back(3);
	v1.push_back(4);
	v1.push_back(5);
	v1.push_back(6);
	print_vector(v1);
	cout << v1.find(2) << endl;

	v1.resize(10, 0);
	print_vector(v1);
	v1.insert(0, 0);
	print_vector(v1);
	v1.erease(5);
	print_vector(v1);
	
}

来看效果:

成功!!!

swap函数

接下来在提供一个swap 函数以供交换,注意一定是深拷贝!!!

代码语言:javascript
复制
		void swap(vector& v) {

			T* tmp = new T[v.capacity()];
			memcpy(tmp, v._start, v.size() * sizeof(T));
			size_t pos = v.size();
			size_t n = v.capacity();

			v._start = _start;
			v._finish = _finish;
			v._end = _end;

			_start = tmp;
			_finish = _start + pos;
			_end = _start + capacity();


		}

来进行一个简单测试:

代码语言:javascript
复制
//交换测试
void vector_test3() {
	cout << "---------swap 测试---------\n";
	vector<int> v1;

	v1.push_back(1);
	v1.push_back(2);
	v1.push_back(3);
	v1.push_back(4);
	v1.push_back(5);
	v1.push_back(6);
	print_vector(v1);
	vector<int> v2(4);

	v2.push_back(1);
	v2.push_back(3);
	v2.push_back(1);
	v2.push_back(4);
	print_vector(v2);
	v2.swap(v1);

	print_vector(v1);
	print_vector(v2);

}

来看效果:

成功交换!!!

总结

我们初步完成了对vector 的模拟实现,但是依然有问题,比如不支持string等特殊类型。所以下一篇文章我们来一起完善一下。

Thanks♪(・ω・)ノ谢谢阅读!!!

下一篇文章见!!!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-03-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 认识vector
    • 开始了解
      • 底层实现
      • 2 开始实现
        • 成员变量
          • 构造函数 析构函数
            • 尾插
              • 迭代器
                • 插入 删除 寻找操作
                  • 操作符重载
                    • swap函数
                    • 总结
                    • Thanks♪(・ω・)ノ谢谢阅读!!!
                    • 下一篇文章见!!!
                    相关产品与服务
                    容器服务
                    腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
                    领券
                    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档