S[i] = a[1] + a[2] + ... a[i] a[l] + ... + a[r] = S[r] - S[l - 1]
final static int N=100010;
public static void main(String[] args) {
int []arr=new int[N];
int []sum=new int[N];
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
for (int i = 1; i <=n; i++) {
arr[i]= sc.nextInt();
}
for (int i = 1; i <=n; i++) {
sum[i]=sum[i-1]+arr[i];
}
while (m--!=0){
int l=sc.nextInt();
int r=sc.nextInt();
System.out.println(sum[r]-sum[l-1]);
}
}S[i, j] = 第i行j列格子左上部分所有元素的和 以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为: S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]
final static int N=1010,M=1010;
public static void main(String[] args) {
int [][]arr=new int[N][M];
int [][]s=new int[N][M];
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
int q=sc.nextInt();
for (int i = 1; i <=n; i++) {
for (int j =1; j <=m; j++) {
arr[i][j]= sc.nextInt();
}
}
for (int i = 1; i <=n; i++) {
for (int j = 1; j <=m; j++) {
s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+arr[i][j];
}
}
while (q--!=0){
int x1=sc.nextInt();
int y1=sc.nextInt();
int x2=sc.nextInt();
int y2=sc.nextInt();
System.out.println(s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1]);
}
}给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c
final static int N=100010;
static int [] s=new int[N];
public static void main(String[] args) {
int []arr=new int[N];
Scanner sc=new Scanner(System.in);
int n=sc.nextInt(),m= sc.nextInt();
for (int i = 1; i <=n; i++) {
arr[i]= sc.nextInt();
}
for (int i = 1; i <=n; i++) {
insert(i,i,arr[i]);
}
while (m--!=0){
int l=sc.nextInt(),r=sc.nextInt(),c=sc.nextInt();
insert(l,r,c);
}
for (int i=1; i <=n; i++) s[i]+=s[i-1];
for(int i=1;i<=n;i++) System.out.print(s[i]+" ");
System.out.println();
}
public static void insert(int l,int r,int c){
s[l]+=c;
s[r+1]-=c;
}给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c: S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c
final static int N=1010;
static int [][]S=new int[N][N];
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int [][]arr=new int[N][N];
int n= sc.nextInt(),m= sc.nextInt(),q= sc.nextInt();
for (int i =1; i <=n; i++) {
for (int j =1; j <=m; j++) {
arr[i][j]= sc.nextInt();//读入原始数组
insert(i,j,i,j,arr[i][j]);//构建差分数组S
}
}
while (q-->0){
int x1= sc.nextInt(),y1= sc.nextInt(),x2= sc.nextInt(),y2= sc.nextInt(),c= sc.nextInt();
insert(x1,y1,x2,y2,c);
}
for (int i =1; i <=n; i++) {
for (int j =1; j <=m; j++) {
S[i][j]+=S[i][j-1]+S[i-1][j]-S[i-1][j-1];//求差分数组的前n项和
System.out.print(S[i][j]+" ");//输出最后结果
}
System.out.println();
}
}
public static void insert(int x1,int y1,int x2,int y2,int c){
S[x1][y1]+=c;
S[x2+1][y1]-=c;
S[x1][y2+1]-=c;
S[x2+1][y2+1]+=c;
}