《CSAPP》是指计算机系统基础课程的经典教材《Computer Systems: A Programmer's Perspective》,由Randal E. Bryant和David R. O'Hallaron编写。该书的主要目标是帮助深入理解计算机系统的工作原理,包括硬件和软件的相互关系,其涵盖了计算机体系结构、汇编语言、操作系统、计算机网络等主题,旨在培养学生系统级编程和分析的能力。
target1实验通常与CS:APP书中的“Buffer Overflow Attack”相关。这个实验旨在教授计算机系统的安全性,防止攻击者定位攻击和锻炼使用金丝雀防护,特别是关于缓冲区溢出漏洞的理解和利用。在这个实验中,尝试利用缓冲区溢出漏洞来修改程序的执行流程,从而实现未授权的操作,比如执行恶意代码或获取系统权限。要求深入了解程序内存布局、堆栈和函数调用等概念,并学会利用输入缓冲区溢出漏洞来修改程序行为,这有助于理解系统安全中的一些基本原则和漏洞。
实验准备阶段:首先需要使用ubuntu联网环境跳转到链接下载实验所需的attacklab:attacklab源文件
下载target1压缩包并输入
tar –xvf target1.tar
进行解压缩,进入该目录所有文件如下所示:
当前提供材料包含一个攻击实验室实例的材料:
1.ctarget 带有代码注入漏洞的Linux二进制文件。用于作业的第1-3阶段。 2.rtarget 带有面向返回编程漏洞的Linux二进制文件。用于作业的第4-5阶段。 3.cookie.txt 包含此实验室实例所需的4字节签名的文本文件。(通过一些Phase需要用到的字符串) 4.farm.c rtarget实例中出现的gadget场的源代码。您可以编译(使用标志-Og)并反汇编它来查找gadget。 5.hex2raw 生成字节序列的实用程序。参见实验讲义中的文档。(Lab提供给我们的把16进制数转二进制字符串的程序)
在终端处输入命令
tar -xvf target1.tar
将压缩包解压如下:
图3-2
实验过程阶段:
使用
objdump -d ctarget > ctarget.asm
objdump -d rtarget > rtarget.asm
对ctarget以及rtarget进行反汇编,得到ctarget.asm和rtarget.asm。
在官方文档的目标程序给出,CTARGET和RTARGET都从标准输入读取字符串。它们使用下面定义的函数getbuf来执行此操作:
函数Gets类似于标准库函数gets—它从标准输入中(从缓冲区)读取字符串 (以’ \n '或文件结束符结束) 并将其(连同空结束符)存储在指定的目的地。即空格/Tab/回车可以写入数组文本文件,不算作字符元素, 不占字节,直到文件结束, 如果是命令行输入的话,直到回车结束(区别getchar ():是在输入缓冲区顺序读入一个字符 (包括空格、回车和 Tab)结束,scanf:空格/Tab/回车都当作结束。函数Gets()无法确定它们的目标缓冲区是否足够大,以存储它们读取的字符串。它们只是复制字节序列,可能会超出在目的地分配的存储边界(缓冲区溢出)对应汇编代码:
因为Ctarget就是让我们通过缓冲区溢出来达到实验目的,所以可以推断sub $0x28,%rsp的40个字节数就等于输入字符串的最大空间,如果大于40个字节,则发生缓冲区溢出(超过40个字节的部分作为函数返回地址,如果不是确切对应指令的地址,则会误入未知区域,报错:
Type string:Ouch!: You caused a segmentation fault!段错误,可能访问了未知额内存)
解决完level1-level3后,进入到第二部分:面向返回的编程。对程序RTARGET执行代码注入攻击比CTARGET要困难得多,因为它使用两种技术来阻止这种攻击:
•使用随机化,以便堆栈位置在不同的运行中不同。这使得无法确定注入的代码将位于何处。 •将保存堆栈的内存部分标记为不可执行,因此即使将程序计数器设置为注入代码的开头,程序也会因分段错误而失败。
通过执行现有代码,而不是注入新代码,在程序中完成有用的事情。这种最通用的形式被称为面向返回编程(ROP)[1,2]。ROP的策略是识别现有程序中的字节序列,该序列由一条或多条指令组成,后面跟着指令ret.这样的段被称为gadget. 即Part II和PartI I的区别是:这里用栈随机性和禁止栈中使用命令:栈随机性导致栈的位置不再固定,也导致我们不能像Part I一样,运行命令直接用栈中的确切位置就返回;禁止栈中使用命令为如果我们的命令是在栈中的,即%rip(程序计数器)指向栈,则会报错(段错误)。
该图表示需要设置要执行的gadget序列,字节值0xc3对ret指令进行编码。说明了如何设置堆栈以执行一系列n个gadget。图中,堆栈包含一系列gadget地址。每个gadget都由一系列指令字节组成,最后一个字节是0xc3,用于编码ret指令。当程序从该配置开始执行ret指令时,它将启动一系列gadget执行,每个gadget末尾的ret指令会导致程序跳到下一个gadget的开头。gadget可以使用与编译器生成的汇编语言语句相对应的代码,尤其是函数末尾的代码。在实践中,可能有一些这种形式的有用gadget,但不足以实现许多重要的操作。例如,编译后的函数不太可能在返回之前将popq%rdi作为其最后一条指令。幸运的是,对于面向字节的指令集,如x86-64,通常可以通过从指令字节序列的其他部分提取模式来找到gadget。
例如,rtarget的一个版本包含为以下C函数生成的代码:
这个功能对攻击系统有用的可能性似乎很小。但是,这个函数的反汇编机器代码显示了一个有趣的字节序列:
字节序列48 89 c7对指令movq%rax,%rdi进行编码。此序列后面是字节值c3,它对ret指令进行编码。函数从地址0x400f15开始,序列从函数的第四个字节开始。因此,此代码包含一个gadget,其起始地址为0x400f18,它将把寄存器%rax中的64位值复制到寄存器%rdi。
RTARGET代码包含许多类似于上面显示的setval_210函数的函数,这些函数位于称为gadget farm的区域中(注意: 重要提示:gadget farm由rtarget副本中的函数start_farm和end_farm划分,不要试图从程序代码的其他部分构造gadget)。工作将是在gadget farm中识别有用的gadget,并使用这些gadget执行类似于第2阶段和第3阶段的攻击。
这一关需要完成的部分还是touch2,只不过是rtarget部分。对于第4阶段,将重复第2阶段的攻击,但使用gadget farm中的gadget对程序RTARGET进行攻击。可以使用由以下指令类型组成的gadget构建解决方案,并且只使用前八个x86-64寄存器(%rax–%rdi)。
1.movq:将数据从一个位置复制到另一个位置。 2.popq:把数据弹出栈。 3.ret:此指令由单字节0xc3编码。 4.nop:此指令(发音为“no-op”,是“no-operation”的缩写)由单字节0x90编码。它唯一的作用是使程序计数器增加1。
在第一部分的Level 2中提到解法为:
定位需要注入的函数touch2的地址的字节表示,以便在getbuf的代码末尾的ret指令将控制权传递给它。第一个参数是在寄存器%rdi中传递的。注入的代码应该先将cookie保存在寄存器%rdi中,然后在使用ret指令将控制权传递给touch2。所以首先需要popq %rdi,把cookie存放到%rdi中,然后再利用retq返回到touch2。
为了完成上面的过程,需要查找工具部分机器码能不能直接提供相应的功能,如果不行,则需要分几个步骤来完成。
在反汇编文件rtarget.asm中查看farm部分汇编代码:
通过搜索48 89 (mov指令),还有对于popq对应的机器码,其中 0xc3 = retq ,0x90 = nop, 找到了两个对这个实验有用的指令且有效的指令(不唯一):popq %rax 58 0x4019a7和movq %rax,%rdi 0x4019c3
新建anwer3.s文件,内容如下所示:
popq %rax (%rax = 0x59b997fa) (location: 0x4019ab) retq (jmp location: 0x4019c5) movq %rax,%rdi (location: 0x4019c5) retq (jmp location: touch2 4017ec)
其中popq %rax (%rax = 0x59b997fa) (location: 0x4019ab)是为了将栈元素存放到%rax中,而retq (jmp location: 0x4019c5)指令是为了将栈中值弹出,然后跳转到地址0x4019c5;movq %rax,%rdi (location: 0x4019c5)是为了将%rax数据取出存放至%rdi,而retq (jmp location: touch2 4017ec)指令是为了将栈中值弹出,然后跳转到地址touch2 4017ec。
新建level4.txt建立内容如下:
命令进行验证:./hex2raw < level4.txt | ./rtarget -q,显示结果为PASS(需要注意的是,这里的指向件应该为rtarget而非ctarget,否则显示仍然为Fail):
由于实验通关过程中是分阶段的,故展示通关过程中所需的创建文件如下:
在计算机系统的广袤领域,仿佛是一片未被揭示的复杂网络,隐藏着深奥的密码,而CSAPP的AttackLab实验正是那一场引人入胜的冒险之旅。这实验不仅深入挖掘计算机系统的基本概念,更将目光投向底层的系统实现,逐步揭开计算机系统内核、汇编语言和数据结构这些层次的神秘面纱。