Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Google Earth Engine(GEE)——GEDI L4B全球地表生物量密度1000m分辨率数据集

Google Earth Engine(GEE)——GEDI L4B全球地表生物量密度1000m分辨率数据集

作者头像
此星光明
发布于 2024-02-02 04:56:44
发布于 2024-02-02 04:56:44
46700
代码可运行
举报
运行总次数:0
代码可运行

GEDI L4B Gridded Aboveground Biomass Density (Version 2)

这个全球生态系统动态调查(GEDI)L4B产品提供了基于从2019-04-18开始的第19任务周到2021-08-04结束的第138任务周的观测结果的1公里×1公里平均地上生物量密度(AGBD)的估计值。GEDI L4A足迹生物量产品将每个高质量的波形转换为AGBD预测,而L4B产品使用每个1公里单元边界内存在的样本来统计推断平均AGBD。

GEDI L2A矢量数据可以在表集LARSE/GEDI/GEDI02_A_002中找到。

GEDI L2A月度栅格数据可以在图像集LARSE/GEDI/GEDI02_A_002_MONTHLY中找到。

更多信息请见用户指南。

Dataset Availability

2019-04-18T00:00:00Z - 2021-08-04T00:00:00

Dataset Provider

USFS Laboratory for Applications of Remote Sensing in Ecology (LARSE) NASA GEDI mission, accessed through the USGS LP DAAC

Earth Engine Snippet

ee.Image("LARSE/GEDI/GEDI04_B_002")

Resolution 1000 meters

Bands

Name

Units

Description

MU

Mg ha^-1

Mean aboveground biomass density (MU): Estimated mean AGBD for the 1 km grid cell, including forest and non-forest.

V1

Variance component 1 (V1): Uncertainty in the estimate of mean biomass due to the field-to-GEDI model used in L4A.

V2

Variance component 2 (V2) If Mode of Inference = 1, this is the uncertainty due to GEDI's sampling of the 1 km cell.If Mode of Inference = 2, this is uncertainty owing to the model predicting biomass using wall-to-wall data, calibrated with the L4A footprint product.

SE

Mg ha^-1

Mean aboveground biomass density standard error (SE): Standard Error of the mean estimate, combining sampling and modeling uncertainty.

PE

Percent

Standard error as a fraction of the estimated mean AGBD (PE). If >100%, the cell values are truncated to 100.

NC

Number of clusters (NC): Number of unique GEDI ground tracks with at least one high-quality waveform intersecting the grid cell.

NS

Number of samples (NS): Total number of high-quality waveforms across all ground tracks within the grid cell.

QF

Quality flag (QF) 0=Outside the GEDI domain1=Land surface2=Land surface and meets GEDI mission L1 requirement (Percent standard error <20% or Standard Error < 20 Mg ha-1)

PS

Prediction stratum (PS) determined by plant functional type and continent. PS is associated with an L4A model parameter covariance matrix that contributes to the Model Error Variance (Table 2).

MI

Mode of interference (MI): Method used for a particular cell. Until mission completion, only those cells where hybrid inference is possible will be populated with a mean biomass value. 0=None applied1=Hybrid Model-Based2=Generalized Hierarchical Model-Based

  • If Mode of Inference = 1, this is the uncertainty due to GEDI's sampling of the 1 km cell.
  • If Mode of Inference = 2, this is uncertainty owing to the model predicting biomass using wall-to-wall data, calibrated with the L4A footprint product.

SEMg ha^-1 Mean aboveground biomass density standard error (SE): Standard Error of the mean estimate, combining sampling and modeling uncertainty. PEPercent Standard error as a fraction of the estimated mean AGBD (PE). If >100%, the cell values are truncated to 100. NC Number of clusters (NC): Number of unique GEDI ground tracks with at least one high-quality waveform intersecting the grid cell. NS Number of samples (NS): Total number of high-quality waveforms across all ground tracks within the grid cell. QF Quality flag (QF)

  • 0=Outside the GEDI domain
  • 1=Land surface
  • 2=Land surface and meets GEDI mission L1 requirement (Percent standard error <20% or Standard Error < 20 Mg ha-1)

PS Prediction stratum (PS) determined by plant functional type and continent. PS is associated with an L4A model parameter covariance matrix that contributes to the Model Error Variance (Table 2). MI Mode of interference (MI): Method used for a particular cell. Until mission completion, only those cells where hybrid inference is possible will be populated with a mean biomass value.

  • 0=None applied
  • 1=Hybrid Model-Based
  • 2=Generalized Hierarchical Model-Based

代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
var l4b = ee.Image('LARSE/GEDI/GEDI04_B_002')

Map.addLayer(
    l4b.select('MU'),
    {min: 10, max: 250, palette: '440154,414387,2a788e,23a884,7ad151,fde725'},
    'Mean Biomass');
Map.addLayer(
    l4b.select('SE'),
    {min: 10, max: 50, palette: '000004,3b0f6f,8c2981,dd4a69,fe9f6d,fcfdbf'},
    'Standard Error');

Citations:

标准差:

平均生物量:

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-02-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
GEE数据——GEDI04_A_和GEDI02_A_002_MONTHLY出现的数据问题
该数据集包含全球生态系统动力学调查(GEDI)第 4A 级(L4A)第 2 版对地上生物量密度(AGBD,单位为兆克/公顷)的预测,以及对每个采样地理定位激光足迹内预测标准误差的估算。在该版本中,颗粒位于子轨道中。模拟波形的高度指标与多个地区和植物功能类型(PFTs)的 AGBD 实地估算值相关联,并对其进行了汇编,以生成一个校准数据集,用于代表世界各地区和植物功能类型组合的模型(即:落叶阔叶树、常绿乔木、常绿灌木、常绿灌木、落叶阔叶树)、针对南美洲的常绿阔叶树,对 GEDI02_A 第 2 版使用的分组选择算法进行了修改,以减少因选择地面高度以上的波形模式作为最低模式而产生的假阳性误差。前言 – 人工智能教程 LARSE/GEDI/GEDI04_A_002_MONTHLY 是原始 GEDI04_A 产品的栅格版本。栅格图像是相应月份各个轨道的月度合成图像。
此星光明
2024/03/08
1830
GEE数据——GEDI04_A_和GEDI02_A_002_MONTHLY出现的数据问题
Google Earth Engine——300米的空间分辨率提供了2010年地面和地下生物质碳密度的时间一致性和统一的全球地图,地面生物量地图整合了针对土地覆盖的木质、草原、耕地和苔原生物量的遥感
This dataset provides temporally consistent and harmonized global maps of aboveground and belowground biomass carbon density for the year 2010 at a 300-m spatial resolution. The aboveground biomass map integrates land-cover specific, remotely sensed maps of woody, grassland, cropland, and tundra biomass. Input maps were amassed from the published literature and, where necessary, updated to cover the focal extent or time period. The belowground biomass map similarly integrates matching maps derived from each aboveground biomass map and land-cover specific empirical models. Aboveground and belowground maps were then integrated separately using ancillary maps of percent tree cover and landcover and a rule-based decision tree. Maps reporting the accumulated uncertainty of pixel-level estimates are also provided.
此星光明
2024/02/02
1640
Google Earth Engine——300米的空间分辨率提供了2010年地面和地下生物质碳密度的时间一致性和统一的全球地图,地面生物量地图整合了针对土地覆盖的木质、草原、耕地和苔原生物量的遥感
Google Earth Engine——热带国家500米处地面活木生物量密度的国家级数据集。这个数据集是由同地的实地测量、LiDAR观测和中分辨率成像光谱仪(MODIS)记录的图像组合而成。
A national-level map of above-ground live woody biomass density for tropical countries at 500m. This dataset was assembled from a combination of co-located field measurements, LiDAR observations, and imagery recorded from the Moderate Resolution Imaging Spectroradiometer (MODIS).
此星光明
2024/02/02
1020
Google Earth Engine——热带国家500米处地面活木生物量密度的国家级数据集。这个数据集是由同地的实地测量、LiDAR观测和中分辨率成像光谱仪(MODIS)记录的图像组合而成。
2010-2021年欧空局CCI全球森林地上生物量估计值
该数据集更新至v5.01版,提供了2010、2015、2016、2017、2018、2019、2020和2021年的森林地上生物量估计值。 这些估算值来自哥白尼哨兵-1 号任务、环境卫星的 ASAR 仪器和日本宇宙航空研究开发机构的高级陆地观测卫星(ALOS-1 和 ALOS-2)提供的地球观测数据(视年份而定),以及其他地球观测来源提供的额外信息。
此星光明
2025/02/02
1410
2010-2021年欧空局CCI全球森林地上生物量估计值
Google Earth Engine(GEE)—— 全球生态系统动态调查(GEDI)综合数据集(高程、森林覆盖、城市占比)
The Global Ecosystem Dynamics Investigation (GEDI) mission aims to characterize ecosystem structure and dynamics to enable radically improved quantification and understanding of the Earth's carbon cycle and biodiversity. The GEDI instrument, attached to the International Space Station (ISS), collects data globally between 51.6° N and 51.6° S latitudes at the highest resolution and densest sampling of the 3-dimensional structure of the Earth.
此星光明
2024/02/02
5570
Google Earth Engine(GEE)—— 全球生态系统动态调查(GEDI)综合数据集(高程、森林覆盖、城市占比)
Google Earth Engine(GEE)——GEDI L2A Vector Canopy Top Height (Version 2) 全球生态系统数据集
The Global Ecosystem Dynamics Investigation (GEDI) mission aims to characterize ecosystem structure and dynamics to enable radically improved quantification and understanding of the Earth's carbon cycle and biodiversity. The GEDI instrument, attached to the International Space Station (ISS), collects data globally between 51.6° N and 51.6° S latitudes at the highest resolution and densest sampling of the 3-dimensional structure of the Earth.
此星光明
2024/02/02
3820
Google Earth Engine(GEE)——GEDI L2A Vector Canopy Top Height (Version 2) 全球生态系统数据集
Google Earth Engine(GEE)——全球红树林分布、地上生物量和树冠高度
全球红树林分布、地上生物量和树冠高 该数据集基于遥感和现场测量数据,描述了红树林湿地的全球分布、生物量和树冠高度。利用遥感冠层高度测量和特定区域的异速模型,得出2000年名义年的(1)红树林地上生物量(AGB)、(2)最大冠层高度(最高的树的高度)和(3)基底面积加权高度(单个树的高度按其基底面积的比例加权)的估计值。此外,还提供了(4)全球赤道地区红树林生态类型中各种森林结构(如灌丛、边缘、河流和盆地)的选定地点的现场测量数据。在指定的地块内,选定的树木被确定为物种和胸高直径(DBH),树木的高度用激光测距仪或 clinometer测量。可以估计每个地块的树木密度(茎的数量),并表示为每单位面积。这些数据被用来推导出AGB、基底面积加权高度(Hba)和最大树冠高度(Hmax)之间的小区级异质性,并验证遥感估计值。
此星光明
2024/02/02
3390
Google Earth Engine(GEE)——全球红树林分布、地上生物量和树冠高度
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CO)实时的 CO 浓度高分辨率图像数据集
This dataset provides near real-time high-resolution imagery of CO concentrations.
此星光明
2024/05/24
1360
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CO)实时的 CO 浓度高分辨率图像数据集
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_NO2) NO2 浓度的离线高分辨率图像数据集
This dataset provides offline high-resolution imagery of NO2 concentrations.
此星光明
2024/02/02
2190
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_NO2) NO2 浓度的离线高分辨率图像数据集
Google Earth Engine ——Landsat 8 Collection 1 Tier 1数据集
Landsat 8 Collection 1 Tier 1 DN values, representing scaled, calibrated at-sensor radiance.
此星光明
2024/02/02
2120
Google Earth Engine ——Landsat 8 Collection 1 Tier 1数据集
Google Earth Engine ——LANDSAT8——Real-Time data 数据集
Landsat 8 Collection 1 Tier 1 and Real-Time data DN values, representing scaled, calibrated at-sensor radiance.
此星光明
2024/02/02
1840
Google Earth Engine ——LANDSAT8——Real-Time data 数据集
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_O3) O3 浓度的实时高分辨率图像数据集
This dataset provides near-real-time high-resolution imagery of total column ozone concentrations. See also COPERNICUS/S5P/OFFL/L3_O3_TCL for the tropospheric column data.
此星光明
2024/02/02
2060
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_O3) O3 浓度的实时高分辨率图像数据集
Google Earth Engine ——LANDSAT8_SR数据集
This dataset is the atmospherically corrected surface reflectance from the Landsat 8 OLI/TIRS sensors. These images contain 5 visible and near-infrared (VNIR) bands and 2 short-wave infrared (SWIR) bands processed to orthorectified surface reflectance, and two thermal infrared (TIR) bands processed to orthorectified brightness temperature
此星光明
2024/02/02
3230
Google Earth Engine ——LANDSAT8_SR数据集
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_SO2) SO2 浓度的实时高分辨率图像数据集
This dataset provides near real-time high-resolution imagery of atmospheric sulfur dioxide (SO2) concentrations.
此星光明
2024/02/02
1800
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_SO2) SO2 浓度的实时高分辨率图像数据集
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CLOUD)云参数实时高分辨率数据集
This dataset provides near real-time high-resolution imagery of cloud parameters.
此星光明
2024/02/02
1790
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CLOUD)云参数实时高分辨率数据集
Google Earth Engine——GFS全球天气预报模型数据集:384小时的预测,预测间隔为3小时,以6小时的时间分辨率进行(每天更新4次)
The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). The GFS dataset consists of selected model outputs (described below) as gridded forecast variables. The 384-hour forecasts, with 3-hour forecast interval, are made at 6-hour temporal resolution (i.e. updated four times daily). Use the 'creation_time' and 'forecast_time' properties to select data of interest.
此星光明
2024/02/02
8650
Google Earth Engine——GFS全球天气预报模型数据集:384小时的预测,预测间隔为3小时,以6小时的时间分辨率进行(每天更新4次)
Google Earth Engine ——Landsat 5 TM_TOA DN值缩放的、校准的传感器辐射度数据集
Landsat 5 TM Collection 1 Tier 2 DN values, representing scaled, calibrated at-sensor radiance.
此星光明
2024/02/02
2330
Google Earth Engine ——Landsat 5 TM_TOA DN值缩放的、校准的传感器辐射度数据集
Google Earth Engine ——MOD11A1/A2 V6产品提供1200×1200公里网格内的每日陆地表面温度(LST)和发射率值1KM分辨率数据集
The MOD11A1 V6 product provides daily land surface temperature (LST) and emissivity values in a 1200 x 1200 kilometer grid. The temperature value is derived from the MOD11_L2 swath product. Above 30 degrees latitude, some pixels may have multiple observations where the criteria for clear-sky are met. When this occurs, the pixel value is the average of all qualifying observations. Provided along with both the day-time and night-time surface temperature bands and their quality indicator layers are MODIS bands 31 and 32 and six observation layers.
此星光明
2024/02/02
5000
Google Earth Engine ——MOD11A1/A2 V6产品提供1200×1200公里网格内的每日陆地表面温度(LST)和发射率值1KM分辨率数据集
Google Earth Engine ——LANDSAT/LT04/C02/T1系列数据介绍!
This dataset contains atmospherically corrected surface reflectance and land surface temperature derived from the data produced by the Landsat TM sensor. These images contain 4 visible and near-infrared (VNIR) bands and 2 short-wave infrared (SWIR) bands processed to orthorectified surface reflectance, and one thermal infrared (TIR) band processed to orthorectified surface temperature. They also contain intermediate bands used in calculation of the ST products, as well as QA bands.
此星光明
2024/02/02
3030
Google Earth Engine ——LANDSAT/LT04/C02/T1系列数据介绍!
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_AER_AI)紫外线气溶胶指数 (UVAI) 的近实时高分辨率数据集
This dataset provides near real-time high-resolution imagery of the UV Aerosol Index (UVAI), also called the Absorbing Aerosol Index (AAI).
此星光明
2024/02/02
1700
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_AER_AI)紫外线气溶胶指数 (UVAI) 的近实时高分辨率数据集
推荐阅读
GEE数据——GEDI04_A_和GEDI02_A_002_MONTHLY出现的数据问题
1830
Google Earth Engine——300米的空间分辨率提供了2010年地面和地下生物质碳密度的时间一致性和统一的全球地图,地面生物量地图整合了针对土地覆盖的木质、草原、耕地和苔原生物量的遥感
1640
Google Earth Engine——热带国家500米处地面活木生物量密度的国家级数据集。这个数据集是由同地的实地测量、LiDAR观测和中分辨率成像光谱仪(MODIS)记录的图像组合而成。
1020
2010-2021年欧空局CCI全球森林地上生物量估计值
1410
Google Earth Engine(GEE)—— 全球生态系统动态调查(GEDI)综合数据集(高程、森林覆盖、城市占比)
5570
Google Earth Engine(GEE)——GEDI L2A Vector Canopy Top Height (Version 2) 全球生态系统数据集
3820
Google Earth Engine(GEE)——全球红树林分布、地上生物量和树冠高度
3390
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CO)实时的 CO 浓度高分辨率图像数据集
1360
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_NO2) NO2 浓度的离线高分辨率图像数据集
2190
Google Earth Engine ——Landsat 8 Collection 1 Tier 1数据集
2120
Google Earth Engine ——LANDSAT8——Real-Time data 数据集
1840
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_O3) O3 浓度的实时高分辨率图像数据集
2060
Google Earth Engine ——LANDSAT8_SR数据集
3230
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_SO2) SO2 浓度的实时高分辨率图像数据集
1800
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CLOUD)云参数实时高分辨率数据集
1790
Google Earth Engine——GFS全球天气预报模型数据集:384小时的预测,预测间隔为3小时,以6小时的时间分辨率进行(每天更新4次)
8650
Google Earth Engine ——Landsat 5 TM_TOA DN值缩放的、校准的传感器辐射度数据集
2330
Google Earth Engine ——MOD11A1/A2 V6产品提供1200×1200公里网格内的每日陆地表面温度(LST)和发射率值1KM分辨率数据集
5000
Google Earth Engine ——LANDSAT/LT04/C02/T1系列数据介绍!
3030
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_AER_AI)紫外线气溶胶指数 (UVAI) 的近实时高分辨率数据集
1700
相关推荐
GEE数据——GEDI04_A_和GEDI02_A_002_MONTHLY出现的数据问题
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验