前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度学习第3天:CNN卷积神经网络

深度学习第3天:CNN卷积神经网络

作者头像
Nowl
发布2024-01-18 20:02:18
2130
发布2024-01-18 20:02:18
举报
文章被收录于专栏:NowlNowl_AI

介绍

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要用于处理和识别具有网格结构的数据,如图像和视频。CNN在计算机视觉领域取得了巨大的成功,广泛应用于图像分类、目标检测、人脸识别等任务。


CNN的主要结构

CNN的主要结构其实就三个部分,卷积层,激励层,池化层,我们接下来主要介绍这三个部分

卷积层

卷积层中核心的东西叫做滤波器,他是一个有形状的矩阵,滤波器的作用是提取图片的特征,我们可以设置滤波器的数量,不同滤波器得到的图片包含图片的不同特征

这张图显示了一个滤波器的某时刻的运作过程,最左边的是原图,中间是滤波器,最右边是结果,它会进行一个内积运算,图中也展示了这个过程

我们可以这样思考,不同的滤波器与图片进行的内积结果不同,如果是一个提取轮廓的滤波器,我们可以理解原图中的轮廓特征经过滤波后会得到保留,而背景特征等信息就会逐渐消失

激励层

其实激励层不算一个层,它是作为卷积层的激活函数,它有以下几个优点

  1. 非线性变换: ReLU 引入了非线性变换,使得 CNN 能够学习更复杂的函数和特征。线性变换的叠加仍然是线性的,而引入非线性激活函数如 ReLU 可以打破这种线性性,使得网络更有能力逼近复杂的函数。
  2. 稀疏激活性: ReLU 对于正数的输入直接输出,而对于负数的输入则输出零。这种性质使得神经网络中的许多神经元变得非常稀疏,只有在输入为正数时才被激活。这有助于减少模型的参数数量,提高计算效率,并减轻过拟合的风险。
  3. 特征的稀疏性: ReLU 可以帮助网络更加稀疏地表示学到的特征。通过将负数的激活设为零,ReLU 有助于将不重要的特征过滤掉,保留对任务有贡献的特征。
  4. 解决梯度消失问题: 相较于一些传统的激活函数(如 sigmoid 和 tanh),ReLU 更容易处理梯度消失的问题。在反向传播过程中,ReLU 的梯度对于正数输入是常数,而对于负数输入是零,这有助于在深层网络中更好地传递梯度,避免梯度消失的问题。

池化层

池化层简而言之是用来降低特征图尺寸,保留重要特征的,提取区域就是池化层的大小,主要的池化层有两种,平均池化与最大池化

平均池化

顾名思义,平均池化就是取区域中的平均值

这幅图中池化层的大小是(2x2)

最大池化

最大池化就是取区域中的最大值

这幅图中池化层的大小也是(2x2)

Kears搭建CNN

搭建代码

以下是使用Keras搭建CNN的代码

代码语言:javascript
复制
# 导入必要的库
from keras.layers import Conv2D, MaxPooling2D
from keras.models import Sequential


# 构建一个简单的卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))

先导入Keras中的库,接着构建神经网络,Conv2D构建了一个卷积层,有32个滤波器,每个滤波器的大小是(3,3),MaxPooling2D代表使用最大池化层,池化层大小为(2,2)

直观感受卷积的作用

在这一部分我们通过可视化来直观感受一下卷积神经网络的作用

1.图片导入与处理

代码语言:javascript
复制
# 加载一张彩色图像
image_path = "hou.jpg"
img = load_img(image_path, target_size=(224, 224))
img_array = img_to_array(img)
img_array = img_array / 255.0  # 归一化


# 将图片扩展维度以符合模型的输入要求
img_array = np.expand_dims(img_array, axis=0)
  • 导入图片
  • 将图片格式转化为224x224
  • 获取图片矩阵
  • 归一化, 归一化不会改变原本的图像像素比例,目的是使模型训练过程中更容易收敛
  • 拓展维度以适应Keras模型的输入要求

2.构建网络

代码语言:javascript
复制
# 构建一个简单的卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3), padding='same'))
model.add(MaxPooling2D((2, 2)))

我们这里就构建一层卷积层,池化层,正常任务中应该多一点,我们先仅了解卷积的作用

3.可视化

代码语言:javascript
复制
# 创建一个新的模型,只包含卷积层部分
convolution_model = Model(inputs=model.input, outputs=model.layers[-1].output)

# 获取卷积层的输出
conv_output = convolution_model.predict(img_array)

print(conv_output.shape)

# 可视化卷积层输出的多个特征图
for i in range(12):
    plt.subplot(4, 3, i+1)
    plt.imshow(conv_output[0, :, :, i], cmap='viridis')
    plt.axis('off')
plt.show()

经过卷积后,我们得到32张图片(有32个滤波器),我们展示前12张

得到以下图片

可以看到得到了图片的不同特征,边缘,纹理,光照,形状,轮廓等(经过多层卷积,这些特征会更加显著)

4.完整代码

这一部分我们搭建三层卷积层的完整代码,再看看效果

代码语言:javascript
复制
import numpy as np
from keras.models import Model
from keras.preprocessing.image import load_img, img_to_array
from keras.layers import Conv2D, MaxPooling2D
from keras.models import Sequential
import matplotlib.pyplot as plt

# 构建一个简单的卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))

# 加载一张彩色图像
image_path = "hou.jpg"
img = load_img(image_path, target_size=(224, 224))
img_array = img_to_array(img)
img_array = img_array / 255.0  # 归一化


# 将图片扩展维度以符合模型的输入要求
img_array = np.expand_dims(img_array, axis=0)

# 创建一个新的模型,只包含卷积层部分
convolution_model = Model(inputs=model.input, outputs=model.layers[-1].output)

# 获取卷积层的输出
conv_output = convolution_model.predict(img_array)

print(conv_output.shape)

# 可视化卷积层输出的多个特征图
for i in range(12):
    plt.subplot(4, 3, i+1)
    plt.imshow(conv_output[0, :, :, i], cmap='viridis')
    plt.axis('off')
plt.show()

可以看到不同的特征更加的显著(无关特征逐渐消失),这样模型能更好地学习到不同的特征,以进行图像识别等任务

结语

  • 卷积神经网络主要用来处理图像,视频等,因为它有提取特征的作用
  • 一般通过改变层的数量,滤波器个数,池化层形状等参数调整神经网络的性能

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-12-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 介绍
  • CNN的主要结构
    • 卷积层
      • 激励层
        • 池化层
        • Kears搭建CNN
          • 搭建代码
            • 直观感受卷积的作用
            • 结语
            相关产品与服务
            人脸识别
            腾讯云神图·人脸识别(Face Recognition)基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于在线娱乐、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档