
snd_card可以说是整个ALSA音频驱动最顶层的一个结构,整个声卡的软件逻辑结构开始于该结构,几乎所有与声音相关的逻辑设备都是在snd_card的管理之下,声卡驱动的第一个动作通常就是创建一个snd_card结构体。正因为如此,本节中,我们也从 struct cnd_card开始吧。
snd_card的定义位于改头文件中:include/sound/core.h:



struct snd_card *card;
int err;
....
err = snd_card_create(index, id, THIS_MODULE, 0, &card);
声卡的专用数据主要用于存放该声卡的一些资源信息,例如中断资源、io资源、dma资源等。可以有两种创建方法:
// struct mychip 用于保存专用数据
err = snd_card_create(index, id, THIS_MODULE,
                sizeof(struct mychip), &card);
// 从private_data中取出
struct mychip *chip = card->private_data;
truct mychip {
    struct snd_card *card;
    ....
};
struct snd_card *card;
struct mychip *chip;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
......
err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
// 专用数据记录snd_card实例
chip->card = card;
.....
然后,把芯片的专有数据注册为声卡的一个低阶设备:
static int snd_mychip_dev_free(struct snd_device *device)
{
    return snd_mychip_free(device->device_data);
}
static struct snd_device_ops ops = {
    .dev_free = snd_mychip_dev_free,
};
....
snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
注册为低阶设备主要是为了当声卡被注销时,芯片专用数据所占用的内存可以被自动地释放。
strcpy(card->driver, "My Chip");
strcpy(card->shortname, "My Own Chip 123");
sprintf(card->longname, "%s at 0x%lx irq %i",
            card->shortname, chip->ioport, chip->irq);
snd_card的driver字段保存着芯片的ID字符串,user空间的alsa-lib会使用到该字符串,所以必须要保证该ID的唯一性。shortname字段更多地用于打印信息,longname字段则会出现在/proc/asound/cards中。
这时候可以创建声卡的各种功能部件了,还记得开头的snd_card结构体的devices字段吗?每一种部件的创建最终会调用snd_device_new()来生成一个snd_device实例,并把该实例链接到snd_card的devices链表中。
通常,alsa-driver的已经提供了一些常用的部件的创建函数,而不必直接调用snd_device_new(),比如:
PCM  ----    snd_pcm_new()
RAWMIDI --   snd_rawmidi_new()
CONTROL --   snd_ctl_create()
TIMER   --   snd_timer_new()
INFO    --   snd_card_proc_new()
JACK    --   snd_jack_new()
err = snd_card_register(card);
if (err < 0) {
    snd_card_free(card);
    return err;
}
我把/sound/arm/pxa2xx-ac97.c的部分代码贴上来:
static int __devinit pxa2xx_ac97_probe(struct platform_device *dev)
{
 struct snd_card *card;
 struct snd_ac97_bus *ac97_bus;
 struct snd_ac97_template ac97_template;
 int ret;
 pxa2xx_audio_ops_t *pdata = dev->dev.platform_data;
 if (dev->id >= 0) {
  dev_err(&dev->dev, "PXA2xx has only one AC97 port./n");
  ret = -ENXIO;
  goto err_dev;
 }
(1)
 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
         THIS_MODULE, 0, &card);
 if (ret < 0)
  goto err;
 card->dev = &dev->dev;
(3)
 strncpy(card->driver, dev->dev.driver->name, sizeof(card->driver));
(4)
 ret = pxa2xx_pcm_new(card, &pxa2xx_ac97_pcm_client, &pxa2xx_ac97_pcm);
 if (ret)
  goto err;
(2)
 ret = pxa2xx_ac97_hw_probe(dev);
 if (ret)
  goto err;
(4)
 ret = snd_ac97_bus(card, 0, &pxa2xx_ac97_ops, NULL, &ac97_bus);
 if (ret)
  goto err_remove;
 memset(&ac97_template, 0, sizeof(ac97_template));
 ret = snd_ac97_mixer(ac97_bus, &ac97_template, &pxa2xx_ac97_ac97);
 if (ret)
  goto err_remove;
(3)
 snprintf(card->shortname, sizeof(card->shortname),
   "%s", snd_ac97_get_short_name(pxa2xx_ac97_ac97));
 snprintf(card->longname, sizeof(card->longname),
   "%s (%s)", dev->dev.driver->name, card->mixername);
 if (pdata && pdata->codec_pdata[0])
  snd_ac97_dev_add_pdata(ac97_bus->codec[0], pdata->codec_pdata[0]);
 snd_card_set_dev(card, &dev->dev);
(5)
 ret = snd_card_register(card);
 if (ret == 0) {
  platform_set_drvdata(dev, card);
  return 0;
 }
err_remove:
 pxa2xx_ac97_hw_remove(dev);
err:
 if (card)
  snd_card_free(card);
err_dev:
 return ret;
}
static int __devexit pxa2xx_ac97_remove(struct platform_device *dev)
{
 struct snd_card *card = platform_get_drvdata(dev);
 if (card) {
  snd_card_free(card);
  platform_set_drvdata(dev, NULL);
  pxa2xx_ac97_hw_remove(dev);
 }
 return 0;
}
static struct platform_driver pxa2xx_ac97_driver = {
 .probe  = pxa2xx_ac97_probe,
 .remove  = __devexit_p(pxa2xx_ac97_remove),
 .driver  = {
  .name = "pxa2xx-ac97",
  .owner = THIS_MODULE,
#ifdef CONFIG_PM
  .pm = &pxa2xx_ac97_pm_ops,
#endif
 },
};
static int __init pxa2xx_ac97_init(void)
{
 return platform_driver_register(&pxa2xx_ac97_driver);
}
static void __exit pxa2xx_ac97_exit(void)
{
 platform_driver_unregister(&pxa2xx_ac97_driver);
}
module_init(pxa2xx_ac97_init);
module_exit(pxa2xx_ac97_exit);
MODULE_AUTHOR("Nicolas Pitre");
MODULE_DESCRIPTION("AC97 driver for the Intel PXA2xx chip");
驱动程序通常由probe回调函数开始,对一下2.1中的步骤,是否有相似之处?
经过以上的创建步骤之后,声卡的逻辑结构如下图所示:

下面的章节里我们分别讨论一下snd_card_create()和snd_card_register()这两个函数。
这个接口在新的Linux内核里面可能找不到,这里我们主要是学习思想!
snd_card_create()在/sound/core/init.c中定义。新版本接口为:

老版本接口说明:
/**
 *  snd_card_create - create and initialize a soundcard structure
 *  @idx: card index (address) [0 ... (SNDRV_CARDS-1)]
 *  @xid: card identification (ASCII string)
 *  @module: top level module for locking
 *  @extra_size: allocate this extra size after the main soundcard structure
 *  @card_ret: the pointer to store the created card instance
 *
 *  Creates and initializes a soundcard structure.
 *
 *  The function allocates snd_card instance via kzalloc with the given
 *  space for the driver to use freely.  The allocated struct is stored
 *  in the given card_ret pointer.
 *
 *  Returns zero if successful or a negative error code.
 */
int snd_card_create(int idx, const char *xid,
      struct module *module, int extra_size,
      struct snd_card **card_ret)
首先,根据extra_size参数的大小分配内存,该内存区可以作为芯片的专有数据使用(见前面的介绍):
card = kzalloc(sizeof(*card) + extra_size, GFP_KERNEL);
 if (!card)
  return -ENOMEM;
拷贝声卡的ID字符串:
if (xid)
 strlcpy(card->id, xid, sizeof(card->id));
如果传入的声卡编号为-1,自动分配一个索引编号:
 if (idx < 0) {
  for (idx2 = 0; idx2 < SNDRV_CARDS; idx2++)
   /* idx == -1 == 0xffff means: take any free slot */
   if (~snd_cards_lock & idx & 1<<idx2) {
    if (module_slot_match(module, idx2)) {
     idx = idx2;
     break;
    }
   }
 }
 if (idx < 0) {
  for (idx2 = 0; idx2 < SNDRV_CARDS; idx2++)
   /* idx == -1 == 0xffff means: take any free slot */
   if (~snd_cards_lock & idx & 1<<idx2) {
    if (!slots[idx2] || !*slots[idx2]) {
     idx = idx2;
     break;
    }
   }
 }
初始化snd_card结构中必要的字段:
 card->number = idx;
 card->module = module;
 INIT_LIST_HEAD(&card->devices);
 init_rwsem(&card->controls_rwsem);
 rwlock_init(&card->ctl_files_rwlock);
 INIT_LIST_HEAD(&card->controls);
 INIT_LIST_HEAD(&card->ctl_files);
 spin_lock_init(&card->files_lock);
 INIT_LIST_HEAD(&card->files_list);
 init_waitqueue_head(&card->shutdown_sleep);
#ifdef CONFIG_PM
 mutex_init(&card->power_lock);
 init_waitqueue_head(&card->power_sleep);
#endif
建立逻辑设备:Control
 /* the control interface cannot be accessed from the user space until */
 /* snd_cards_bitmask and snd_cards are set with snd_card_register */
 err = snd_ctl_create(card);
建立proc文件中的info节点:通常就是/proc/asound/card0
err = snd_info_card_create(card);
把第一步分配的内存指针放入private_data字段中:
 if (extra_size > 0)
  card->private_data = (char *)card + sizeof(struct snd_card);
snd_card_create()在/sound/core/init.c中定义。

首先,创建sysfs下的设备:
 if (!card->card_dev) {
  card->card_dev = device_create(sound_class, card->dev,
            MKDEV(0, 0), card,
            "card%i", card->number);
  if (IS_ERR(card->card_dev))
   card->card_dev = NULL;
 }
其中,sound_class是在/sound/sound_core.c中创建的:
static char *sound_devnode(struct device *dev, mode_t *mode)
{
 if (MAJOR(dev->devt) == SOUND_MAJOR)
  return NULL;
 return kasprintf(GFP_KERNEL, "snd/%s", dev_name(dev));
}
static int __init init_soundcore(void)
{
 int rc;
 rc = init_oss_soundcore();
 if (rc)
  return rc;
 sound_class = class_create(THIS_MODULE, "sound");
 if (IS_ERR(sound_class)) {
  cleanup_oss_soundcore();
  return PTR_ERR(sound_class);
 }
 sound_class->devnode = sound_devnode;
 return 0;
}
由此可见,声卡的class将会出现在文件系统的/sys/class/sound/下面,并且,sound_devnode()也决定了相应的设备节点也将会出现在/dev/snd/下面。
接下来的步骤,通过snd_device_register_all()注册所有挂在该声卡下的逻辑设备,snd_device_register_all()实际上是通过snd_card的devices链表,遍历所有的snd_device,并且调用snd_device的ops->dev_register()来实现各自设备的注册的。
if ((err = snd_device_register_all(card)) < 0)
  return err;
最后就是建立一些相应的proc和sysfs下的文件或属性节点,代码就不贴了。
至此,整个声卡完成了建立过程。
参考:https://blog.csdn.net/DroidPhone/article/details/6289712