前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >R-CNN作者Ross Girshick离职,何恺明、谢赛宁回归学界,Meta CV走出了多少大神

R-CNN作者Ross Girshick离职,何恺明、谢赛宁回归学界,Meta CV走出了多少大神

作者头像
机器之心
发布2023-12-05 20:18:48
2140
发布2023-12-05 20:18:48
举报
文章被收录于专栏:机器之心

机器之心报道

编辑:杜伟、陈萍

Yann LeCun 表示:「人才离开 FAIR 是我们的损失,但自己仍为他们感到高兴」。

FAIR 又一位大佬级研究科学家「出走了」,这次是 R-CNN 作者 Ross Girshick。

近日,Meta 首席科学家 Yann LeCun 发推宣布,Ross Girshick 将离开 FAIR,加入艾伦人工智能研究所(AI2)。此前离职的还有 ResNeXt 一作谢赛宁(加入纽约大学任助理教授)、Georgia Gkioxari(加入 Caltech 任助理教授)等。

图源:https://twitter.com/ylecun/status/1730713022195470541

我们查了一下 Ross Girshick 的个人主页,证实了他从 FAIR 离职的消息。他将于 2024 年初入职 AI2。

AI2 的计算机视觉高级总监 Ani Kembhavi 表示,Ross Girshick 届时将加入 PRIOR 团队。PRIOR 全称为感知推理和交互研究,为 AI2 的计算机视觉研究团队,致力于推进计算机视觉研究,以创建能够看到、探索、学习和推理世界的 AI 系统。

图源:https://twitter.com/anikembhavi/status/1730655170038821085

Ross Girshick 发文追忆其在 Meta 的职业生涯,表示 FAIR 过去是、将来仍是一个令人惊叹的地方。不过在一个地方呆了太长时间(8 年)或许是促使他离开的不错理由,重新初始化和随机化在研究生涯中非常重要。此外,他还声明任何有关发表指标的言论纯属无稽之谈。

图源:https://twitter.com/inkynumbers/status/1730735493711810639

其实,加上今年 7 月底宣布回归学界,将于 2024 年加入麻省理工学院(MIT)电气工程与计算机科学系 EECS 担任教职的何恺明,FAIR 近年来已经走出了很多 CV 领域的大佬。

Yann LeCun 表示,他们的离开对 FAIR 是损失,但自己为他们感到高兴。他认为工业实验室的科学家转投学术界或非营利组织绝对没有错。对于一些人来说,这是自然的职业转变。

LeCun 还举了贝尔实验室的例子,该实验室相当一部分科学家会在 5 到 10 年后离开,并在一个不错的大学获得终身教职(完全跳过了艰难的谋求终身教职的过程)。在人生的不同阶段,优先项会发生改变。在工业界待久了的人可能想去教学,与学生待在一起,享受教学带来的直接回报。

事实上,人们可以在 FAIR 工作几年后获得学界的终身教职,这是一个特点,而不是缺陷。这种转变在 FAIR 是可能的,就像贝尔实验室一样,FAIR 实行开放的研究并鼓励科学家发表论文。

这意味着人们在 FAIR 开始自己的职业生涯不会冒任何风险,选择是自由的。从业界到学界并拓展研究生态系统,这是一件好事。

LeCun 还提到,过去几年,很多才华横溢的年轻计算机科学家选择加入 FAIR,比如 Ishan Misra、Nicolas Carion、Xinlei Chen、Christoph Feichtenhofer 等。

人才流出流进是再正常不过的事情,很多人将自己从舒适区域「踢」了出来。不过也有人认为,AI 大佬接连离开 FAIR 可以对其现状窥知一二。

图源:https://twitter.com/LearnOpenCV/status/1730736970136158274

这一年来,Meta 先后开源了 Llama、Llama 2 系列大模型,成为开源社区的中坚力量。但 Meta 在留住 AI 人才方面也面临很多挑战,人才的外流不可避免。像 Ross Girshick 这样在工业界积累了丰富经验的科学家进入大学或非营利机构,会为学界带来一些不一样的东西,并有可能做出更有影响力的研究。

RBG 大神:Ross Girshick 介绍

个人主页:https://www.rossgirshick.info/

此前,Ross Girshick 是 Meta FAIR 的研究科学家,2015 年至 2023 年期间致力于计算机视觉和机器学习的研究。他于 2012 年获得了芝加哥大学计算机科学博士学位。

在加入 FAIR 之前,Ross 是微软研究院的研究员,也是加州大学伯克利分校的博士后,在那里他师从 Jitendra Malik 和 Trevor Darrell 教授。

Ross 的研究兴趣包括视觉感知算法(目标识别、定位、分割、姿态估计等)、表征学习(使用强监督、弱监督或根本没有监督的预训练网络)以及视觉和语言研究。

由于他对开源软件和数据集的贡献,Ross 获得了 2017 年 PAMI 青年研究员奖以及 2017 年、2021 年和 2023 年 PAMI Mark Everingham 奖。

Ross 在 AI 界可谓是战果累累,他最初因开发 R-CNN(基于区域的卷积神经网络)目标检测方法而闻名,这项研究可以说是改变了目标检测领域的研究思路,之后的其他研究 Fast-RCNN、Faster-RCNN 都沿袭了 R-CNN 的思路。

现在他的谷歌学术引用超过 41 万次。

在 Ross 过往参与的工作中,有很多热门研究,如 Fast R-CNN、Mask R-CNN、YOLO、Faster R-CNN、SAM 等。

2017 年,Ross 参与的 Mask R-CNN 获得了 ICCV 马尔奖(最佳论文),现在这篇论文的引用量达 3 万多次;另一篇论文《Focal Loss for Dense Object Detection》获得当年 ICCV 最佳学生论文。

2021 年,Girshick 参与的论文《Masked Autoencoders Are Scalable Vision Learners》成为了计算机视觉圈的热门话题。这篇论文展示了一种被称为掩码自编码器(masked autoencoders,MAE)的新方法,可以用作计算机视觉的可扩展自监督学习器。

今年,Meta 发布了「分割一切」(Segment Anything)模型(SAM),被很多人誉为颠覆传统 CV 领域的研究,Ross 是这篇论文的作者之一。

如今选择去 AI2,期待 Girshick 能带来更多惊艳之作。

© THE END

转载请联系本公众号获得授权

投稿或寻求报道 :content@jiqizhixin.com

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-12-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档