首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >聊聊RNN与seq2seq

聊聊RNN与seq2seq

作者头像
Ryan_OVO
发布2023-11-01 09:23:08
发布2023-11-01 09:23:08
2850
举报
文章被收录于专栏:程序随笔程序随笔

seq2seq模型也称为Encoder-Decoder模型。顾名思义,这个模型有两个模块——Encoder(编码器)和Decoder(解码器)。编码器对输入数据进行编码,解码器对被编码的数据进行解码。此时编码器编码的信息浓缩了翻译所必需的信息,解码器基于这个浓缩的信息生成目标文本。

这里的数据一般指时序数据,即按时间顺序记录的数据列,具有可比性和结构化性。

编码器

以RNN为例,设计一个编码器结构如下

编码器利用RNN将时序数据转换为隐藏状态h。这里的RNN使用的是LSTM模型,编码器输出的向量h是LSTM层的最后一个隐藏状态,其中编码了翻译输入文本所需的信息。

解码器

LSTM层会接收编码器层最后隐藏状态输出的向量h。上一个层的输出预测会作为下一个层的输入参数,如此循环下去。

这一分隔符(特殊符号)。这个分隔符被用作通知解码器开始生成文本的信号。另外,解码器采样到出现为止,所以它也是结束信号。也就是说,分隔符可以用来指示解码器的“开始/结束”。

整体结构

连接编码器和解码器后的seq2seq整体结构如下,可以看出seq2seq是组合了两个RNN的神经网络。

对于seq2seq序列模型更多解释可看 博客

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-10-31,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 编码器
  • 解码器
  • 整体结构
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档