最近我们被客户要求撰写关于Copula的研究报告,包括一些图形和统计输出。
Copula方法是测度金融市场间尾部相关性比较有效的方法,而且可用于研究非正态、非线性以及尾部非对称等较复杂的相依特征关系
因此,Copula方法开始逐渐代替多元GARCH模型的相关性分析,成为考察金融变量间关系的流行方法,被广泛地用于市场一体化、风险管理以及期货套期保值的研究中。
国内外学者对于尾部相关性和Copula方法已经有了深入的研究,提出多种Copula模型来不断优化尾部相关系数对于不同情况下股票之间相关性的刻画,对于股票的聚类方法也进行了改进和拓展,然而能够结合这些方法对于资产选择进行研究的较少。尤其是在面对现今股票市场海量级的股票数据,如何从股票间的尾部相关性挖掘到有效信息,得到能够有效规避风险的资产组合是很少有人研究的问题。并且大多尾部相关的分析都只停留在定性的分析中,并且多是在市场与市场之间,板块与板块之间的相关性分析,对于股票间定量的相关性研究还有不足。相信研究成果对于投资者有效的规避风险,寻求最佳的投资组合有较大的帮助。
本文结合Copula方法和聚类思想对大数量级的股票间尾部相关性进行分析,帮助客户构建混合Copula模型并计算股票间尾部相关系数,再根据尾部相关系数选用合理高效的聚类方法进行聚类,为投资者选择投资组合提供有效的建议。
本文选取上证A股数据 ( 查看文末了解数据免费获取方式 ) ,其数据来源于wind数据库。由于时间间隔较长,本文将通过对相关系数进行计算来分析其之间的相关性,然后再通过聚类分析将其合并来进行研究。具体步骤如下:
j=1077
aj=median(sy(:,j)); %(j=1(SZGY),2(SZSY),3(SZDC),4(GYSY))
bj=median(abs(sy(:,j)-aj))/0.6745;
hj=1.06*bj*1077^(-1/5);
d=cdf('Normal',(sy(n,j)-wj(i))/hj,0,1);
sum=sum+d;
end
%求似然值
%fenbu=xlsread('fenbu.xlsx'); %读取数据,
fenbu=sy;
u=mean(sy);
s(j)=s(j)+b(i); %求似然值
end
end
theta=0.5;
for j=1:1000;
k1(1)=0.2; %权重初值
k2(1)=0.3 ;
c3(i)=1077^(-1)*k3(j)*fr(i)*(k1(j)*gu(i)+k2(j)*cl(i)+k3(j)*fr(i))^(-1);
k1(j+1)=k1(j+1)+c1(i); %gu(i),cl(i),fr(i)表示三个函数的密度函数
abs(k3(j+1)-k3(j))<=0.000001); %满足收敛条件是跳出
end
l=length(k1') %收敛时的步骤数目
k1(l),k2(l),k3(l) %收敛时的结果
%b=b(0); %参数初值
for j=1:1000; %运算步骤
h1(i)=k1*gu_p(i)*gu(i)/(gu_m(i)*(k1*gu(i)+k2*cl(i)+k3*fr(i)));
s1=s1+h1(i); %gu_p 是 Gumbel 密度函数,gu_m 是 Gumbel 的密度函数
n=13;d=array(0 dim=c(13 13))
for(i in 1:(n-1)){
d[i i]=1
for(j in (i+1):n){
clayton.cop=claytonCopula(3 dim=2);clayton.cop
u=pobs(b);u
M=0.247060*G'+0.441831*C'+0.311109*F'; %生成混合 Copula 随机数
for c = 2:8
[idx,ctrs] = kmeans(M,c);
01
02
03
04
[aic,bic] = aicbic([logL1;logL2;logL3;logL4],
当聚类数目为 7 时的 k-means 聚类
c=7;
[idx,ctrs] = kmeans(M,c);
X=M
plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)
hold on
plot(X(idx==4,1),X(idx==4,2),'b.','MarkerSize',12)
hold on
plot(X(idx==5,1),X(idx==5,2),'b.','MarkerSize',12)
hold on
plot(X(idx==6,1),X(idx==6,2),'b.','MarkerSize',12)
hold on
plot(X(idx==7,1),X(idx==7,2),'b.','MarkerSize',12)
hold on
plot(X(idx==8,1),X(idx==8,2),'b.','MarkerSize',12)
hold on
plot(ctrs(:,1),ctrs(:,2),'kx',...
library(cluster)
agn1=aes(delta method="average");agn1
plot(x with.ss")
lines(x with.ss lty=2)
本文将 Copula方法应用到股票市场的相关分析中,以上证A股数据作为研究对象,基于 Copula方法构建了对不同投资组合的风险和收益的预测模型;其次,将聚类思想应用到股票选择中,将选择出来的股票进行聚类分析,得出各个聚类结果。本文不仅考虑了股票之间的相关关系,还考虑了它们之间的相关性。
数据获取
在公众号后台回复“a股数****据”,可免费获取完整数据。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。