首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >学生课堂行为识别教学质量评估算法

学生课堂行为识别教学质量评估算法

原创
作者头像
燧机科技
发布于 2023-09-10 05:49:54
发布于 2023-09-10 05:49:54
4620
举报

学生课堂行为识别教学质量评估算法利用教室安装的摄像头,学生课堂行为识别教学质量评估算法对学生的表情状态、课堂表现和互动行为进行全面监测。对学生的参与度、专注度、互动质量等进行评估,为教师提供有关教学效果的实时反馈。可以为教师提供个性化的教学建议和资源,使教学更加针对性和有效性。学生课堂行为识别教学质量评估算法使用到的YOLO框架模型,其全称是You Only Look Once: Unified, Real-Time Object Detection,其实个人觉得这个题目取得非常好,基本上把Yolo算法的特点概括全了:You Only Look Once说的是只需要一次CNN运算,Unified指的是这是一个统一的框架,提供end-to-end的预测,而Real-Time体现是Yolo算法速度快。这里我们谈的是Yolo-v1版本算法,其性能是差于后来的SSD算法的,但是Yolo后来也继续进行改进,产生了Yolo9000算法。本文主要讲述Yolo-v1算法的原理,特别是算法的训练与预测中详细细节,最后将给出如何使用TensorFlow实现Yolo算法。

学生课堂行为识别教学质量评估算法之所以选择yolo框架,是因为Yolo采用卷积网络来提取特征,然后使用全连接层来得到预测值。网络结构参考GooLeNet模型,包含24个卷积层和2个全连接层,如图8所示。对于卷积层,主要使用1x1卷积来做channle reduction,然后紧跟3x3卷积。对于卷积层和全连接层,采用Leaky ReLU激活函数:max(x,0.1x)max(x,0.1x)。但是最后一层却采用线性激活函数。学生课堂行为识别教学质量评估算法在训练之前,先在ImageNet上进行了预训练,其预训练的分类模型采用图8中前20个卷积层,然后添加一个average-pool层和全连接层。预训练之后,在预训练得到的20层卷积层之上加上随机初始化的4个卷积层和2个全连接层。由于检测任务一般需要更高清的图片,所以将网络的输入从224x224增加到了448x448。

使用YOLOv7 做学生课堂行为识别教学质量评估算法训练,该模型在在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器并在V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
作者已关闭评论
暂无评论
推荐阅读
编辑精选文章
换一批
AI课堂教学质量评估系统算法
AI课堂教学质量评估系统算法通过yolov7网络模型框架利用摄像头和人脸识别技术,AI课堂教学质量评估系统算法实时监测学生的上课表情和课堂行为。同时,还结合语音识别技术和听课专注度分析算法,对学生的听课专注度进行评估,生成教学质量报告,并提供针对性的改进建议,帮助教师发现问题并进行针对性的改进,提升教学效果。AI课堂教学质量评估系统算法之所以选择yolov7框架模型,相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。
燧机科技
2023/09/10
7950
AI课堂教学质量评估系统算法
打架斗殴行为识别算法
打架斗殴行为识别算法通过yolov7网络模型深度学习算法,打架斗殴行为识别算法对提取到的信息进行分析和比对,判断是否存在打架斗殴行为。打架斗殴行为识别算法一旦打架斗殴行为识别算法识别到打架斗殴行为,系统会立即生成预警信息,并通知相关管理人员采取应对措施。打架斗殴行为识别算法选择YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器并在V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。相对于其他类型的工具,打架斗殴行为识别算法中用到的YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。
燧机科技
2023/09/16
7160
打架斗殴行为识别算法
校园打架行为识别检测系统
校园打架行为识别检测系统基于python基于yolov7深度学习框架+边缘分析技术,校园打架行为识别检测系统自动对校园、广场等区域进行实时监测,当监测到有人打架斗殴时,系统立即抓拍存档语音提醒,并将打架行为回传给学校后台,提醒及时处理打架情况。YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器。并在V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。
燧机科技
2022/12/28
7810
校园打架行为识别检测系统
校园学生翻墙打架识别检测系统
校园学生翻墙打架识别检测系统通过yolov7网络模型深度学习分析技术,校园学生翻墙打架识别检测系统可以对:打架行为、倒地行为识别、人员拥挤行为、攀高翻墙违规行为等违规行为进行实时分析检测。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。
燧机科技
2023/02/23
4590
校园学生翻墙打架识别检测系统
河道水面漂浮物垃圾识别监测系统
河道水面漂浮物垃圾识别监测系统通过Python基于YOLOv7对河道湖泊区域进行实时监测,当河道水面漂浮物垃圾识别监测系统监测到湖面有漂浮物或者垃圾时,系统立即抓拍存档同步发给后台人员通知后台工作人员及时清理。YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器。并在V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。
燧机科技
2022/12/28
6320
河道水面漂浮物垃圾识别监测系统
非法捕捞识别预警系统
非法捕捞识别预警系统通过yolov7网络模型AI视频分析技术,非法捕捞识别预警系统能够对河道湖泊画面场景中出现的非法捕捞行为进行7*24小时不间断智能检测识别实时告警通知相关人员及时处理。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,整个系统如图5所示:首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络预测结果得到检测的目标。相比R-CNN算法,其是一个统一的框架,其速度更快,而且Yolo的训练过程也是end-to-end的。
燧机科技
2023/05/11
5880
非法捕捞识别预警系统
PCB板缺陷检测识别系统
PCB板缺陷检测识别系统通过YOLOv7网络深度学习技术,PCB板缺陷检测识别系统对现场PCB是否存在缺陷部分进行实时分析检测,当PCB板缺陷检测识别系统检测到PCB本身存在缺陷的时候,立即抓拍存档告警方便后期对生产线针对性的进行调整改进从而提高良品率。YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好,所以在工业界也十分受欢迎,接下来我们介绍YOLO 系列算法。
燧机科技
2023/01/20
7890
河道治理漂浮物识别监测系统
河道治理漂浮物识别监测系统通过yolov7网络模型深度视觉分析技术,河道治理漂浮物识别监测系统实时检测着河道水面是否存在漂浮物、水浮莲以及生活垃圾等,河道治理漂浮物识别监测系统识别到河道水面存在水藻垃圾等漂浮物,河道治理漂浮物识别监测系统立即抓拍存档预警。You Only Look Once说的是只需要一次CNN运算,Unified指的是这是一个统一的框架,提供end-to-end的预测,而Real-Time体现是Yolo算法速度快。整体来看,Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,相比R-CNN算法,其是一个统一的框架,其速度更快,而且Yolo的训练过程也是end-to-end的。
燧机科技
2023/02/12
6650
河道治理漂浮物识别监测系统
AI工衣工服智能识别系统
AI工衣工服智能识别系统通过yolov7网络模型深度学习算法,AI工衣工服智能识别系统对场人员穿戴进行实时不间断监测,AI工衣工服智能识别系统发现现场人员未按要求穿戴时,AI工衣工服智能识别系统立即抓拍告警。YOLO 的核心思想就是把目标检测转变成一个回归问题,利用整张图作为网络的输入,仅仅经过一个神经网络,得到bounding box(边界框) 的位置及其所属的类别。You Only Look Once说的是只需要一次CNN运算,Unified指的是这是一个统一的框架,提供end-to-end的预测,而Real-Time体现是Yolo算法速度快。
燧机科技
2023/02/15
6450
AI工衣工服智能识别系统
学校食堂明厨亮灶监控系统
学校食堂明厨亮灶监控系统通过Python基于YOLOv7卷积神经网络学习与图像识别技术,学校食堂明厨亮灶监控系统对现场画面进行24小时实时分析,如:厨房出现老鼠狗猫、厨师未戴口罩、厨师未戴厨师帽、厨师服穿戴识别、抽烟识别、玩手机识别,同时实时抓拍相关情况,全程记录留痕。YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器。并在V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。
燧机科技
2022/12/27
5410
学校食堂明厨亮灶监控系统
水面漂浮物垃圾识别检测系统 智慧水利
水面漂浮物垃圾识别检测系统通过Python+YOLOv7网络模型,水面漂浮物垃圾识别检测系统实现对水面漂浮物以及生活各种垃圾等全天候24小时不间断智能化检测。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码)。
燧机科技
2023/01/25
6860
垃圾分类智能分析系统
垃圾分类智能分析系统应用python+yolov7网络模型深度学习识别技术,垃圾分类智能分析系统自动识别违规投放行为并现场进行语音提示实时预警。垃圾分类智能分析系统如垃圾满溢抓拍预警、人脸识别、工服识别、厨余垃圾混投未破袋识别预警、垃圾落地识别预警、人来扔垃圾语音提醒等。我们选择当下YOLO最新的卷积神经网络YOLOv7来进行垃圾分类识别检测。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。
燧机科技
2023/01/30
1.3K0
穿戴规范智能识别系统
穿戴规范智能识别系统通过yolov7+python网络模型AI深度视觉学习算法,穿戴规范智能识别系统对工厂画面中人员穿戴行为自动识别分析,发现现场人员未按照规定穿戴着装,立即抓拍告警。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。
燧机科技
2023/04/09
8380
穿戴规范智能识别系统
监控室值班人员脱岗睡岗识别算法 yolov7
监控室值班人员脱岗睡岗识别算法基于python+Yolov7深度学习神经网络算法,python+Yolov7算法模型可以7*24小时不间断自动识别现场画面人员行为,算法鲁棒性强。YOLOv7 的发展方向与当前主流的实时目标检测器不同,同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。
燧机科技
2023/05/16
1.2K0
监控室值班人员脱岗睡岗识别算法 yolov7
ai皮带跑偏撕裂监测系统功能
ai皮带跑偏撕裂监测系统功能基于yolov7网络模型人工智能视觉技术,ai皮带跑偏撕裂监测系统功能自动识别现场画面中传送皮带撕裂、跑偏、偏移等情况,ai皮带跑偏撕裂监测系统功能立即告警抓拍存档同步回传后台。YOLO 的核心思想就是把目标检测转变成一个回归问题,利用整张图作为网络的输入,仅仅经过一个神经网络,得到bounding box(边界框) 的位置及其所属的类别。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。
燧机科技
2023/05/08
4120
ai皮带跑偏撕裂监测系统功能
AI工人操作行为流程规范识别算法
AI工人操作行为流程规范识别算法通过yolov7+python网络模型框架,AI工人操作行为流程规范识别算法对作业人员的操作行为进行实时分析,根据设定算法规则判断操作行为是否符合作业标准规定的SOP流程。AI工人操作行为流程规范识别算法并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知道有哪些对象以及它们的位置。AI工人操作行为流程规范识别算法模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。
燧机科技
2023/09/24
6201
AI工人操作行为流程规范识别算法
人员摔倒识别预警系统 人员跌倒检测系统
人员摔倒识别预警系统 人员跌倒检测系统基于yolov7网络模型计算机识别技术,人员摔倒识别预警系统 人员跌倒检测系统对画面中人员摔倒进行实时检测识别抓拍告警。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。
燧机科技
2023/03/06
9300
人员摔倒识别预警系统 人员跌倒检测系统
骑电动车不戴头盔识别抓拍系统
骑电动车不戴头盔识别抓拍系统通过Python基于YOLOv7网络深度学习技术,骑电动车不戴头盔识别抓拍系统对现场画面中骑电动车不戴头盔识别抓拍包括骑乘人员和带乘人员。YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器,并在V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。
燧机科技
2023/01/13
8420
骑电动车不戴头盔识别抓拍系统
操作流程违规作业监测系统
操作流程违规作业监测系统通过python+yolov7网络深度学习技术,操作流程违规作业监测系统对高危场景下作业人员未按照操作流程进行正常操作行为进行实时分析识别检测,操作流程违规作业监测系统发现现场人员违规作业操作行为,不需人为干预,立即自动抓拍存档预警。YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器。并在V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。
燧机科技
2023/01/28
4940
智慧城管出店经营识别系统
智慧城管出店经营识别系统通过python+yolov7网络模型深度学习技术,智慧城管出店经营识别算法对现场画面进行实时分析,可以实现违规摆摊检测、街道垃圾监测、违章停车识别、违规广告、出店经营检测、公共设施破坏、游摊小贩识别等违规识别。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。
燧机科技
2023/03/28
4770
智慧城管出店经营识别系统
相关推荐
AI课堂教学质量评估系统算法
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档