选这个题是因为最近涉及到TNBC较多,解析这篇文章对我有着较大的意义。再者我在组会上讲过这篇文章,一时间就想到了。然而… 对了时隔一个月再次登录这个公众号,看到了墨眉大佬的留言(PS:经常在群里看到大家讨论问题),代码都是现成的,搬运工辛苦一点没事啦~话说也不辛苦,当是工作之余的额外消遣了。 谁知道制药行业也要用到初级的R...最近在看R语言实战3补知识,还需要点医学统计学了,进而需要药代动力学,临床药理学...是的学不过来了,但有些知识简直是一通百通。
首先是准备工作

开始找数据

重新浏览一遍文章,问题来了。之前讲解这篇文章时,也没注意到这么多细胞

对,于是有问题了,

然后就是花费了从早上9点至下午4点的运行过程,流程是初级流程,时间是好几倍,这时间可以跑完别的一整篇了,果然不可高攀。 乍一看去,这些图不算难呀,可能这个PI和TI的设定得多花点时间琢磨一下

PI的公式

TI的公式

好了,开始聚类分群。 1.读取数据,质控
###### step1:导入数据 ######
rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)
library(ggplot2)
library(clustree)
library(cowplot)
library(dplyr)
samples=list.files('GSE169246_scRNA_RAW/')
samples
library(Matrix)
mtx=readMM('GSE169246_scRNA_RAW/GSE169246_TNBC_RNA.counts.mtx.gz')
mtx[1:4,1:4]
dim(mtx)
library(data.table)
cl=fread('GSE169246_scRNA_RAW/GSE169246_TNBC_RNA.barcode.tsv.gz',
header = F,data.table = F )
head(cl)
rl=fread('GSE169246_scRNA_RAW/GSE169246_TNBC_RNA.feature.tsv.gz',
header = F,data.table = F )
head(cl)
head(rl)
dim(mtx)
rownames(mtx) <- rl$V1
colnames(mtx)=cl$V1
sce.all=CreateSeuratObject(counts = mtx )
as.data.frame(sce.all@assays$RNA@counts[1:10, 1:2])
head(sce.all@meta.data, 10)
table(sce.all@meta.data$orig.ident)
sce.all
library(stringr)
phe=str_split(rownames(sce.all@meta.data),'[.]',simplify = T)
sce.all@meta.data$orig.ident = phe[,2]
phe=as.data.frame(str_split( phe[,2] ,'_',simplify = T))
head(phe)
sce.all@meta.data$treat = phe$V1
sce.all@meta.data$patient = phe$V2
sce.all@meta.data$type = phe$V3
table(sce.all@meta.data$orig.ident)
###### step2:QC质控 ######
dir.create("./1-QC")
setwd("./1-QC")
# sce.all=readRDS("../sce.all_raw.rds")
#计算线粒体基因比例
# 人和鼠的基因名字稍微不一样
mito_genes=rownames(sce.all)[grep("^MT-", rownames(sce.all))]
mito_genes #13个线粒体基因
sce.all=PercentageFeatureSet(sce.all, "^MT-", col.name = "percent_mito")
fivenum(sce.all@meta.data$percent_mito)
#计算核糖体基因比例
ribo_genes=rownames(sce.all)[grep("^Rp[sl]", rownames(sce.all),ignore.case = T)]
ribo_genes
sce.all=PercentageFeatureSet(sce.all, "^RP[SL]", col.name = "percent_ribo")
fivenum(sce.all@meta.data$percent_ribo)
#计算红血细胞基因比例
rownames(sce.all)[grep("^Hb[^(p)]", rownames(sce.all),ignore.case = T)]
sce.all=PercentageFeatureSet(sce.all, "^HB[^(P)]", col.name = "percent_hb")
fivenum(sce.all@meta.data$percent_hb)
#可视化细胞的上述比例情况
feats <- c("nFeature_RNA", "nCount_RNA", "percent_mito", "percent_ribo", "percent_hb")
feats <- c("nFeature_RNA", "nCount_RNA")
p1=VlnPlot(sce.all, group.by = "orig.ident", features = feats, pt.size = 0.01, ncol = 2) +
NoLegend()
p1
library(ggplot2)
ggsave(filename="Vlnplot1.pdf",plot=p1,width = 10,height = 7.5)
feats <- c("percent_mito", "percent_ribo", "percent_hb")
p2=VlnPlot(sce.all, group.by = "orig.ident", features = feats, pt.size = 0.01, ncol = 3, same.y.lims=T) +
scale_y_continuous(breaks=seq(0, 100, 5)) +
NoLegend()
p2
ggsave(filename="Vlnplot2.pdf",plot=p2,width = 10,height = 7.5)
p3=FeatureScatter(sce.all, "nCount_RNA", "nFeature_RNA", group.by = "orig.ident", pt.size = 0.5)
ggsave(filename="Scatterplot.pdf",plot=p3,width = 10,height = 7.5)
#根据上述指标,过滤低质量细胞/基因
#过滤指标1:最少表达基因数的细胞&最少表达细胞数的基因
selected_c <- WhichCells(sce.all, expression = nFeature_RNA > 300)
selected_f <- rownames(sce.all)[Matrix::rowSums(sce.all@assays$RNA@counts > 0 ) > 3]
sce.all.filt <- subset(sce.all, features = selected_f, cells = selected_c)
dim(sce.all)
dim(sce.all.filt)
# 可以看到,主要是过滤了基因,其次才是细胞
#过滤指标2:线粒体/核糖体基因比例(根据上面的violin图)
selected_mito <- WhichCells(sce.all.filt, expression = percent_mito < 20)
selected_ribo <- WhichCells(sce.all.filt, expression = percent_ribo > 3)
selected_hb <- WhichCells(sce.all.filt, expression = percent_hb < 0.1)
length(selected_hb)
length(selected_ribo)
length(selected_mito)
sce.all.filt <- subset(sce.all.filt, cells = selected_mito)
sce.all.filt <- subset(sce.all.filt, cells = selected_ribo)
sce.all.filt <- subset(sce.all.filt, cells = selected_hb)
dim(sce.all.filt)
table(sce.all.filt$orig.ident)
#可视化过滤后的情况
feats <- c("nFeature_RNA", "nCount_RNA")
p1_filtered=VlnPlot(sce.all.filt, group.by = "orig.ident", features = feats, pt.size = 0.1, ncol = 2) +
NoLegend()
ggsave(filename="Vlnplot1_filtered.pdf",plot=p1_filtered,width = 10,height = 7.5)
feats <- c("percent_mito", "percent_ribo", "percent_hb")
p2_filtered=VlnPlot(sce.all.filt, group.by = "orig.ident", features = feats, pt.size = 0.1, ncol = 3) +
NoLegend()
ggsave(filename="Vlnplot2_filtered.pdf",plot=p2_filtered,width = 10,height = 7.5)
#过滤指标3:过滤特定基因
# Filter MALAT1 管家基因
sce.all.filt <- sce.all.filt[!grepl("MALAT1", rownames(sce.all.filt),ignore.case = T), ]
# Filter Mitocondrial 线粒体基因
sce.all.filt <- sce.all.filt[!grepl("^MT-", rownames(sce.all.filt),ignore.case = T), ]
# 当然,还可以过滤更多
dim(sce.all.filt)
#细胞周期评分
sce.all.filt = NormalizeData(sce.all.filt)
s.genes=Seurat::cc.genes.updated.2019$s.genes
g2m.genes=Seurat::cc.genes.updated.2019$g2m.genes
sce.all.filt=CellCycleScoring(object = sce.all.filt,
s.features = s.genes,
g2m.features = g2m.genes,
set.ident = TRUE)
p4=VlnPlot(sce.all.filt, features = c("S.Score", "G2M.Score"), group.by = "orig.ident",
ncol = 2, pt.size = 0.1)
ggsave(filename="Vlnplot4_cycle.pdf",plot=p4,width = 10,height = 7.5)
sce.all.filt@meta.data %>% ggplot(aes(S.Score,G2M.Score))+geom_point(aes(color=Phase))+
theme_minimal()
ggsave(filename="cycle_details.pdf" )
# S.Score较高的为S期,G2M.Score较高的为G2M期,都比较低的为G1期
dim(sce.all)
saveRDS(sce.all.filt, "sce.all_qc.rds")
setwd('../')

过滤最后剩下

2.聚类分群
rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)
library(ggplot2)
library(clustree)
library(cowplot)
library(dplyr)
getwd()
dir.create("2-harmony")
getwd()
setwd("2-harmony")
sce=readRDS("../1-QC/sce.all_qc.rds")
sce
sce <- FindVariableFeatures(sce)
sce <- ScaleData(sce)
sce <- RunPCA(sce, features = VariableFeatures(object = sce))
library(harmony)
table(sce$orig.ident)
seuratObj <- RunHarmony(sce, "orig.ident")
names(seuratObj@reductions)
seuratObj <- RunUMAP(seuratObj, dims = 1:15,
reduction = "harmony")
DimPlot(seuratObj,reduction = "umap",label=T )
sce=seuratObj
sce <- FindNeighbors(sce, reduction = "harmony",
dims = 1:15)
sce.all=sce
#设置不同的分辨率,观察分群效果(选择哪一个?)
for (res in c(0.01, 0.05, 0.1, 0.2, 0.3, 0.5,0.8,1)) {
sce.all=FindClusters(sce.all,
resolution = res, algorithm = 1)
}
colnames(sce.all@meta.data)
apply(sce.all@meta.data[,grep("RNA_snn",colnames(sce.all@meta.data))],2,table)
p1_dim=plot_grid(ncol = 3, DimPlot(sce.all, reduction = "umap", group.by = "RNA_snn_res.0.01") +
ggtitle("louvain_0.01"), DimPlot(sce.all, reduction = "umap", group.by = "RNA_snn_res.0.1") +
ggtitle("louvain_0.1"), DimPlot(sce.all, reduction = "umap", group.by = "RNA_snn_res.0.2") +
ggtitle("louvain_0.2"))
ggsave(plot=p1_dim, filename="Dimplot_diff_resolution_low.pdf",width = 14,height = 7)
p1_dim=plot_grid(ncol = 3, DimPlot(sce.all, reduction = "umap", group.by = "RNA_snn_res.0.8") +
ggtitle("louvain_0.8"), DimPlot(sce.all, reduction = "umap", group.by = "RNA_snn_res.1") +
ggtitle("louvain_1"), DimPlot(sce.all, reduction = "umap", group.by = "RNA_snn_res.0.3") +
ggtitle("louvain_0.3"))
ggsave(plot=p1_dim, filename="Dimplot_diff_resolution_high.pdf",width = 18,height = 7)
p2_tree=clustree(sce.all@meta.data, prefix = "RNA_snn_res.")
ggsave(plot=p2_tree, filename="Tree_diff_resolution.pdf")
#接下来分析,按照分辨率为0.3进行
sel.clust = "RNA_snn_res.0.3"
sce.all <- SetIdent(sce.all, value = sel.clust)
table(sce.all@active.ident)
saveRDS(sce.all, "sce.all_int.rds")
#可视化细胞的上述比例情况
feats <- c("nFeature_RNA", "nCount_RNA", "percent_mito", "percent_ribo", "percent_hb")
feats <- c("nFeature_RNA", "nCount_RNA")
p1=VlnPlot(sce.all, features = feats, pt.size = 0, ncol = 2) +
NoLegend()
p1
library(ggplot2)
ggsave(filename="Vlnplot1.pdf",plot=p1)
feats <- c("percent_mito", "percent_ribo", "percent_hb")
p2=VlnPlot(sce.all, features = feats, pt.size = 0, ncol = 3, same.y.lims=T) +
scale_y_continuous(breaks=seq(0, 100, 5)) +
NoLegend()
p2
ggsave(filename="Vlnplot2.pdf",plot=p2)
p3=FeatureScatter(sce.all, "nCount_RNA", "nFeature_RNA",
pt.size = 0.5)
ggsave(filename="Scatterplot.pdf",plot=p3)
###### step5:检查常见分群情况 ######
setwd('../')
dir.create("3-cell")
setwd("3-cell")
sce.all$patient
DimPlot(sce.all, reduction = "umap", group.by = "patient",label = T,raster=FALSE)
ggsave('umap_by_patient.pdf',width = 9,height = 7)
DimPlot(sce.all, reduction = "umap", group.by = "RNA_snn_res.0.3",label = T,raster=FALSE)
ggsave('umap_by_RNA_snn_res.0.3.pdf',width = 9,height = 7)
library(ggplot2)
genes_to_check = c('PTPRC', 'CD3D', 'CD3E', 'CD4','CD8A',
'CD19', 'CD79A', 'MS4A1' ,
'IGHG1', 'MZB1', 'SDC1',
'CD68', 'CD163', 'CD14',
'TPSAB1' , 'TPSB2', # mast cells,
'RCVRN','FPR1' , 'ITGAM' ,
'C1QA', 'C1QB', # mac
'S100A9', 'S100A8', 'MMP19',# monocyte
'FCGR3A',
'LAMP3', 'IDO1','IDO2',## DC3
'CD1E','CD1C', # DC2
'KLRB1','NCR1', # NK
'FGF7','MME', 'ACTA2', ## fibo
'DCN', 'LUM', 'GSN' , ## mouse PDAC fibo
'MKI67' , 'TOP2A',
'PECAM1', 'VWF', ## endo
'EPCAM' , 'KRT19', 'PROM1', 'ALDH1A1' )
library(stringr)
p_all_markers <- DotPlot(sce.all, features = genes_to_check,
assay='RNA' ) + coord_flip()
p_all_markers
ggsave(plot=p_all_markers, filename="check_all_marker_by_seurat_cluster.pdf",
width = 9,height = 7)
p_umap=DimPlot(sce.all, reduction = "umap",
group.by = "RNA_snn_res.0.3",label = T,raster=FALSE)
library(patchwork)
p_all_markers+p_umap
ggsave('markers_umap.pdf',width = 15,height = 7)
DimPlot(sce.all, reduction = "umap",split.by = 'orig.ident',
group.by = "RNA_snn_res.0.3",label = T)
ggsave('orig.ident_umap.pdf',width = 45,height = 7)

3.注释细胞群 主打清奇配色。
rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)
library(ggplot2)
library(clustree)
library(cowplot)
library(dplyr)
getwd()
setwd('3-cell/')
sce.all=readRDS( "../2-harmony/sce.all_int.rds")
sce.all
# 看图,定细胞亚群:
celltype=data.frame(ClusterID=0:21,
celltype= 0:21)
#定义细胞亚群
celltype[celltype$ClusterID %in% c( 12,14),2]='DC'
celltype[celltype$ClusterID %in% c( 0,1,3,20,5,6,7),2]='Tcells'
celltype[celltype$ClusterID %in% c( 11 ),2]='plasma'
celltype[celltype$ClusterID %in% c(2,17,18,19 ),2]='Bcells'
celltype[celltype$ClusterID %in% c(10,16 ),2]='cycling'
celltype[celltype$ClusterID %in% c( 4 ),2]='mono1'
celltype[celltype$ClusterID %in% c( 9 ),2]='mono2'
celltype[celltype$ClusterID %in% c( 8,15 ),2]='mac'
celltype[celltype$ClusterID %in% c( 13,21 ),2]='mast'
head(celltype)
celltype
table(celltype$celltype)
sce.all@meta.data$celltype = "NA"
for(i in 1:nrow(celltype)){
sce.all@meta.data[which(sce.all@meta.data$RNA_snn_res.0.3 == celltype$ClusterID[i]),'celltype'] <- celltype$celltype[i]}
table(sce.all@meta.data$celltype)
mycolors <-c('#E5D2DD', '#53A85F', '#F1BB72', '#F3B1A0', '#D6E7A3', '#57C3F3',
'#E95C59', '#E59CC4', '#AB3282', '#BD956A',
'#9FA3A8', '#E0D4CA', '#C5DEBA', '#F7F398',
'#C1E6F3', '#6778AE', '#91D0BE', '#B53E2B',
'#712820', '#DCC1DD', '#CCE0F5', '#CCC9E6', '#625D9E', '#68A180', '#3A6963',
'#968175')
col =c("#3176B7","#F78000","#3FA116","#CE2820","#9265C1",
"#885649","#DD76C5","#7F7F7F","#BBBE00","#41BED1")
library(patchwork)
p_all_markers=DotPlot(sce.all, features = genes_to_check,
assay='RNA' ,group.by = 'celltype' ) + coord_flip()+th
p_umap=DimPlot(sce.all, reduction = "umap", group.by = "celltype",label = T,
label.box=T,raster=FALSE,cols = col)
p_all_markers+p_umap
ggsave('markers_umap_by_celltype.pdf',width = 14,height = 8)
p_harmony=DimPlot(sce.all, reduction = "harmony", group.by = "celltype",label = T,raster=FALSE)
p_all_markers+p_harmony
ggsave('markers_harmony_by_celltype.pdf',width = 12,height = 8)
sce.all=RunTSNE(sce.all, dims = 1:15,
reduction = "harmony")
p_tsne=DimPlot(sce.all, reduction = "tsne", group.by = "celltype",label = T,raster=FALSE,cols = col)
p_all_markers+p_tsne
ggsave('markers_tsne_by_celltype.pdf',width = 12,height = 8)
phe=sce.all@meta.data
save(phe,file = 'phe-by-markers.Rdata')
sce.all
table(Idents(sce.all))
Idents(sce.all)=sce.all$celltype
table(Idents(sce.all))
saveRDS(sce.all, "sce.all_celltype.rds")

写在最后:其实图画多了之后,是有一种模糊又朦胧的感觉的,知道哪类数据用什么图形展示,看到某个图怎么能画出来。